Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem4 Structured version   Visualization version   GIF version

Theorem finxpreclem4 35259
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 23-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem4.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑦,𝑛,𝑥
Allowed substitution hints:   𝑈(𝑦)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑦)

Proof of Theorem finxpreclem4
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2onn 8357 . . . . . . . 8 2o ∈ ω
2 nnon 7639 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ On)
3 2on 8199 . . . . . . . . . . . . . 14 2o ∈ On
4 oawordeu 8272 . . . . . . . . . . . . . 14 (((2o ∈ On ∧ 𝑁 ∈ On) ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
53, 4mpanl1 700 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
6 riotasbc 7178 . . . . . . . . . . . . 13 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁[(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
75, 6syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ On ∧ 2o𝑁) → [(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
8 riotaex 7163 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V
9 sbceq1g 4319 . . . . . . . . . . . . . 14 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁))
108, 9ax-mp 5 . . . . . . . . . . . . 13 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁)
11 csbov2g 7248 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜))
128, 11ax-mp 5 . . . . . . . . . . . . . . 15 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜)
138csbvargi 4337 . . . . . . . . . . . . . . . 16 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜 = (𝑜 ∈ On (2o +o 𝑜) = 𝑁)
1413oveq2i 7213 . . . . . . . . . . . . . . 15 (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1512, 14eqtri 2762 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1615eqeq1i 2739 . . . . . . . . . . . . 13 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
1710, 16bitri 278 . . . . . . . . . . . 12 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
187, 17sylib 221 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
192, 18sylan 583 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
20 simpl 486 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
2119, 20eqeltrd 2834 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
22 riotacl 7177 . . . . . . . . . . 11 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
23 riotaund 7199 . . . . . . . . . . . 12 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) = ∅)
24 0elon 6255 . . . . . . . . . . . 12 ∅ ∈ On
2523, 24eqeltrdi 2842 . . . . . . . . . . 11 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
2622, 25pm2.61i 185 . . . . . . . . . 10 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On
27 nnarcl 8333 . . . . . . . . . . . 12 ((2o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
283, 27mpan 690 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
291biantrur 534 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3028, 29bitr4di 292 . . . . . . . . . 10 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3126, 30ax-mp 5 . . . . . . . . 9 ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
3221, 31sylib 221 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
33 nnacom 8334 . . . . . . . 8 ((2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
341, 32, 33sylancr 590 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
35 df-2o 8192 . . . . . . . . 9 2o = suc 1o
3635oveq2i 7213 . . . . . . . 8 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o)
37 1onn 8356 . . . . . . . . 9 1o ∈ ω
38 nnasuc 8323 . . . . . . . . 9 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
3932, 37, 38sylancl 589 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4036, 39syl5eq 2786 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4134, 19, 403eqtr3d 2782 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
422adantr 484 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ On)
43 sucidg 6280 . . . . . . . . . . . 12 (1o ∈ ω → 1o ∈ suc 1o)
4437, 43ax-mp 5 . . . . . . . . . . 11 1o ∈ suc 1o
4544, 35eleqtrri 2833 . . . . . . . . . 10 1o ∈ 2o
46 ssel 3884 . . . . . . . . . 10 (2o𝑁 → (1o ∈ 2o → 1o𝑁))
4745, 46mpi 20 . . . . . . . . 9 (2o𝑁 → 1o𝑁)
4847ne0d 4240 . . . . . . . 8 (2o𝑁𝑁 ≠ ∅)
4948adantl 485 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ≠ ∅)
50 nnlim 7647 . . . . . . . 8 (𝑁 ∈ ω → ¬ Lim 𝑁)
5150adantr 484 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ¬ Lim 𝑁)
52 onsucuni3 35232 . . . . . . 7 ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁) → 𝑁 = suc 𝑁)
5342, 49, 51, 52syl3anc 1373 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc 𝑁)
54 nnacom 8334 . . . . . . . 8 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5532, 37, 54sylancl 589 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
56 suceq 6267 . . . . . . 7 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5755, 56syl 17 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5841, 53, 573eqtr3d 2782 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
59 ordom 7643 . . . . . . . . 9 Ord ω
60 ordelss 6218 . . . . . . . . 9 ((Ord ω ∧ 𝑁 ∈ ω) → 𝑁 ⊆ ω)
6159, 60mpan 690 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ⊆ ω)
62 nnfi 8834 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
63 nnunifi 8911 . . . . . . . 8 ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → 𝑁 ∈ ω)
6461, 62, 63syl2anc 587 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ ω)
6564adantr 484 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
66 nnacl 8328 . . . . . . 7 ((1o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
6737, 32, 66sylancr 590 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
68 peano4 7659 . . . . . 6 (( 𝑁 ∈ ω ∧ (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
6965, 67, 68syl2anc 587 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7058, 69mpbid 235 . . . 4 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
7170fveq2d 6710 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7271adantr 484 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7332adantr 484 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
74 df-1o 8191 . . . . . . . 8 1o = suc ∅
7574fveq2i 6709 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅)
76 rdgsuc 8149 . . . . . . . 8 (∅ ∈ On → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)))
7724, 76ax-mp 5 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅))
78 opex 5337 . . . . . . . . 9 𝑁, 𝑦⟩ ∈ V
7978rdg0 8146 . . . . . . . 8 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅) = ⟨𝑁, 𝑦
8079fveq2i 6709 . . . . . . 7 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)) = (𝐹‘⟨𝑁, 𝑦⟩)
8175, 77, 803eqtri 2766 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (𝐹‘⟨𝑁, 𝑦⟩)
82 finxpreclem4.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
8382finxpreclem3 35258 . . . . . 6 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑦)⟩ = (𝐹‘⟨𝑁, 𝑦⟩))
8481, 83eqtr4id 2793 . . . . 5 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = ⟨ 𝑁, (1st𝑦)⟩)
8584fveq2d 6710 . . . 4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩))
86 2on0 8200 . . . . . 6 2o ≠ ∅
87 nnlim 7647 . . . . . . 7 (2o ∈ ω → ¬ Lim 2o)
881, 87ax-mp 5 . . . . . 6 ¬ Lim 2o
89 rdgsucuni 35234 . . . . . 6 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)))
903, 86, 88, 89mp3an 1463 . . . . 5 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
91 1oequni2o 35233 . . . . . . 7 1o = 2o
9291fveq2i 6709 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)
9392fveq2i 6709 . . . . 5 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
9490, 93eqtr4i 2765 . . . 4 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o))
9574fveq2i 6709 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅)
96 rdgsuc 8149 . . . . . 6 (∅ ∈ On → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)))
9724, 96ax-mp 5 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅))
98 opex 5337 . . . . . . 7 𝑁, (1st𝑦)⟩ ∈ V
9998rdg0 8146 . . . . . 6 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅) = ⟨ 𝑁, (1st𝑦)⟩
10099fveq2i 6709 . . . . 5 (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10195, 97, 1003eqtri 2766 . . . 4 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10285, 94, 1013eqtr4g 2799 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o))
103 1on 8198 . . . 4 1o ∈ On
104 rdgeqoa 35235 . . . 4 ((2o ∈ On ∧ 1o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
1053, 103, 104mp3an12 1453 . . 3 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
10673, 102, 105sylc 65 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
10719fveq2d 6710 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
108107adantr 484 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
10972, 106, 1083eqtr2rd 2781 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2935  ∃!wreu 3056  Vcvv 3401  [wsbc 3687  csb 3802  wss 3857  c0 4227  ifcif 4429  cop 4537   cuni 4809   × cxp 5538  Ord word 6201  Oncon0 6202  Lim wlim 6203  suc csuc 6204  cfv 6369  crio 7158  (class class class)co 7202  cmpo 7204  ωcom 7633  1st c1st 7748  reccrdg 8134  1oc1o 8184  2oc2o 8185   +o coa 8188  Fincfn 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-en 8616  df-fin 8619
This theorem is referenced by:  finxpsuclem  35262
  Copyright terms: Public domain W3C validator