Step | Hyp | Ref
| Expression |
1 | | 2onn 8472 |
. . . . . . . 8
⊢
2o ∈ ω |
2 | | nnon 7718 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
3 | | 2on 8311 |
. . . . . . . . . . . . . 14
⊢
2o ∈ On |
4 | | oawordeu 8386 |
. . . . . . . . . . . . . 14
⊢
(((2o ∈ On ∧ 𝑁 ∈ On) ∧ 2o ⊆
𝑁) → ∃!𝑜 ∈ On (2o
+o 𝑜) = 𝑁) |
5 | 3, 4 | mpanl1 697 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ On ∧ 2o
⊆ 𝑁) →
∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁) |
6 | | riotasbc 7251 |
. . . . . . . . . . . . 13
⊢
(∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → [(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁) |
7 | 5, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ On ∧ 2o
⊆ 𝑁) →
[(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁) |
8 | | riotaex 7236 |
. . . . . . . . . . . . . 14
⊢
(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ V |
9 | | sbceq1g 4348 |
. . . . . . . . . . . . . 14
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ V →
([(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ ⦋(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = 𝑁)) |
10 | 8, 9 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
([(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ ⦋(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = 𝑁) |
11 | | csbov2g 7321 |
. . . . . . . . . . . . . . . 16
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ V →
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = (2o
+o ⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌𝑜)) |
12 | 8, 11 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = (2o
+o ⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌𝑜) |
13 | 8 | csbvargi 4366 |
. . . . . . . . . . . . . . . 16
⊢
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌𝑜 = (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) |
14 | 13 | oveq2i 7286 |
. . . . . . . . . . . . . . 15
⊢
(2o +o ⦋(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜⦌𝑜) = (2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) |
15 | 12, 14 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = (2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) |
16 | 15 | eqeq1i 2743 |
. . . . . . . . . . . . 13
⊢
(⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = 𝑁 ↔ (2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) = 𝑁) |
17 | 10, 16 | bitri 274 |
. . . . . . . . . . . 12
⊢
([(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ (2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) = 𝑁) |
18 | 7, 17 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ On ∧ 2o
⊆ 𝑁) →
(2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁) |
19 | 2, 18 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁) |
20 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 ∈
ω) |
21 | 19, 20 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) |
22 | | riotacl 7250 |
. . . . . . . . . . 11
⊢
(∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) |
23 | | riotaund 7272 |
. . . . . . . . . . . 12
⊢ (¬
∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) = ∅) |
24 | | 0elon 6319 |
. . . . . . . . . . . 12
⊢ ∅
∈ On |
25 | 23, 24 | eqeltrdi 2847 |
. . . . . . . . . . 11
⊢ (¬
∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) |
26 | 22, 25 | pm2.61i 182 |
. . . . . . . . . 10
⊢
(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ On |
27 | | nnarcl 8447 |
. . . . . . . . . . . 12
⊢
((2o ∈ On ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) → ((2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o
∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))) |
28 | 3, 27 | mpan 687 |
. . . . . . . . . . 11
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o
∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))) |
29 | 1 | biantrur 531 |
. . . . . . . . . . 11
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω ↔ (2o
∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)) |
30 | 28, 29 | bitr4di 289 |
. . . . . . . . . 10
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω)) |
31 | 26, 30 | ax-mp 5 |
. . . . . . . . 9
⊢
((2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω) |
32 | 21, 31 | sylib 217 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω) |
33 | | nnacom 8448 |
. . . . . . . 8
⊢
((2o ∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o
2o)) |
34 | 1, 32, 33 | sylancr 587 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o
2o)) |
35 | | df-2o 8298 |
. . . . . . . . 9
⊢
2o = suc 1o |
36 | 35 | oveq2i 7286 |
. . . . . . . 8
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 2o) =
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o suc
1o) |
37 | | 1onn 8470 |
. . . . . . . . 9
⊢
1o ∈ ω |
38 | | nnasuc 8437 |
. . . . . . . . 9
⊢
(((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈
ω) → ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
39 | 32, 37, 38 | sylancl 586 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
40 | 36, 39 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 2o) = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
41 | 34, 19, 40 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
42 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 ∈
On) |
43 | | sucidg 6344 |
. . . . . . . . . . . 12
⊢
(1o ∈ ω → 1o ∈ suc
1o) |
44 | 37, 43 | ax-mp 5 |
. . . . . . . . . . 11
⊢
1o ∈ suc 1o |
45 | 44, 35 | eleqtrri 2838 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
46 | | ssel 3914 |
. . . . . . . . . 10
⊢
(2o ⊆ 𝑁 → (1o ∈ 2o
→ 1o ∈ 𝑁)) |
47 | 45, 46 | mpi 20 |
. . . . . . . . 9
⊢
(2o ⊆ 𝑁 → 1o ∈ 𝑁) |
48 | 47 | ne0d 4269 |
. . . . . . . 8
⊢
(2o ⊆ 𝑁 → 𝑁 ≠ ∅) |
49 | 48 | adantl 482 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 ≠
∅) |
50 | | nnlim 7726 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → ¬ Lim
𝑁) |
51 | 50 | adantr 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ¬ Lim 𝑁) |
52 | | onsucuni3 35538 |
. . . . . . 7
⊢ ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim
𝑁) → 𝑁 = suc ∪ 𝑁) |
53 | 42, 49, 51, 52 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 = suc ∪ 𝑁) |
54 | | nnacom 8448 |
. . . . . . . 8
⊢
(((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈
ω) → ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) =
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
55 | 32, 37, 54 | sylancl 586 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 1o) =
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
56 | | suceq 6331 |
. . . . . . 7
⊢
(((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 1o) =
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) → suc ((℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) +o 1o) =
suc (1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
57 | 55, 56 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ suc ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
58 | 41, 53, 57 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ suc ∪ 𝑁 = suc (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) |
59 | | ordom 7722 |
. . . . . . . . 9
⊢ Ord
ω |
60 | | ordelss 6282 |
. . . . . . . . 9
⊢ ((Ord
ω ∧ 𝑁 ∈
ω) → 𝑁 ⊆
ω) |
61 | 59, 60 | mpan 687 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → 𝑁 ⊆
ω) |
62 | | nnfi 8950 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) |
63 | | nnunifi 9065 |
. . . . . . . 8
⊢ ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → ∪ 𝑁
∈ ω) |
64 | 61, 62, 63 | syl2anc 584 |
. . . . . . 7
⊢ (𝑁 ∈ ω → ∪ 𝑁
∈ ω) |
65 | 64 | adantr 481 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ∪ 𝑁 ∈ ω) |
66 | | nnacl 8442 |
. . . . . . 7
⊢
((1o ∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) |
67 | 37, 32, 66 | sylancr 587 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) |
68 | | peano4 7739 |
. . . . . 6
⊢ ((∪ 𝑁
∈ ω ∧ (1o +o (℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁)) ∈ ω) → (suc
∪ 𝑁 = suc (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) ↔ ∪ 𝑁 = (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)))) |
69 | 65, 67, 68 | syl2anc 584 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (suc ∪ 𝑁 = suc (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) ↔ ∪ 𝑁 = (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)))) |
70 | 58, 69 | mpbid 231 |
. . . 4
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ∪ 𝑁 = (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) |
71 | 70 | fveq2d 6778 |
. . 3
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘∪
𝑁) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)))) |
72 | 71 | adantr 481 |
. 2
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘∪
𝑁) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)))) |
73 | 32 | adantr 481 |
. . 3
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) →
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω) |
74 | | df-1o 8297 |
. . . . . . . 8
⊢
1o = suc ∅ |
75 | 74 | fveq2i 6777 |
. . . . . . 7
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = (rec(𝐹, 〈𝑁, 𝑦〉)‘suc ∅) |
76 | | rdgsuc 8255 |
. . . . . . . 8
⊢ (∅
∈ On → (rec(𝐹,
〈𝑁, 𝑦〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∅))) |
77 | 24, 76 | ax-mp 5 |
. . . . . . 7
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∅)) |
78 | | opex 5379 |
. . . . . . . . 9
⊢
〈𝑁, 𝑦〉 ∈ V |
79 | 78 | rdg0 8252 |
. . . . . . . 8
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘∅) = 〈𝑁, 𝑦〉 |
80 | 79 | fveq2i 6777 |
. . . . . . 7
⊢ (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∅)) = (𝐹‘〈𝑁, 𝑦〉) |
81 | 75, 77, 80 | 3eqtri 2770 |
. . . . . 6
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = (𝐹‘〈𝑁, 𝑦〉) |
82 | | finxpreclem4.1 |
. . . . . . 7
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) |
83 | 82 | finxpreclem3 35564 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → 〈∪ 𝑁,
(1st ‘𝑦)〉 = (𝐹‘〈𝑁, 𝑦〉)) |
84 | 81, 83 | eqtr4id 2797 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = 〈∪ 𝑁,
(1st ‘𝑦)〉) |
85 | 84 | fveq2d 6778 |
. . . 4
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘1o)) = (𝐹‘〈∪ 𝑁,
(1st ‘𝑦)〉)) |
86 | | 2on0 8313 |
. . . . . 6
⊢
2o ≠ ∅ |
87 | | nnlim 7726 |
. . . . . . 7
⊢
(2o ∈ ω → ¬ Lim
2o) |
88 | 1, 87 | ax-mp 5 |
. . . . . 6
⊢ ¬
Lim 2o |
89 | | rdgsucuni 35540 |
. . . . . 6
⊢
((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬
Lim 2o) → (rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o))) |
90 | 3, 86, 88, 89 | mp3an 1460 |
. . . . 5
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o)) |
91 | | 1oequni2o 35539 |
. . . . . . 7
⊢
1o = ∪
2o |
92 | 91 | fveq2i 6777 |
. . . . . 6
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = (rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o) |
93 | 92 | fveq2i 6777 |
. . . . 5
⊢ (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘1o)) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o)) |
94 | 90, 93 | eqtr4i 2769 |
. . . 4
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘1o)) |
95 | 74 | fveq2i 6777 |
. . . . 5
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘suc ∅) |
96 | | rdgsuc 8255 |
. . . . . 6
⊢ (∅
∈ On → (rec(𝐹,
〈∪ 𝑁, (1st ‘𝑦)〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∅))) |
97 | 24, 96 | ax-mp 5 |
. . . . 5
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∅)) |
98 | | opex 5379 |
. . . . . . 7
⊢
〈∪ 𝑁, (1st ‘𝑦)〉 ∈ V |
99 | 98 | rdg0 8252 |
. . . . . 6
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘∅) = 〈∪ 𝑁,
(1st ‘𝑦)〉 |
100 | 99 | fveq2i 6777 |
. . . . 5
⊢ (𝐹‘(rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∅)) =
(𝐹‘〈∪ 𝑁,
(1st ‘𝑦)〉) |
101 | 95, 97, 100 | 3eqtri 2770 |
. . . 4
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) = (𝐹‘〈∪ 𝑁,
(1st ‘𝑦)〉) |
102 | 85, 94, 101 | 3eqtr4g 2803 |
. . 3
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o)) |
103 | | 1on 8309 |
. . . 4
⊢
1o ∈ On |
104 | | rdgeqoa 35541 |
. . . 4
⊢
((2o ∈ On ∧ 1o ∈ On ∧
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) →
(rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))))) |
105 | 3, 103, 104 | mp3an12 1450 |
. . 3
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) →
(rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))))) |
106 | 73, 102, 105 | sylc 65 |
. 2
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)))) |
107 | 19 | fveq2d 6778 |
. . 3
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁)) |
108 | 107 | adantr 481 |
. 2
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁)) |
109 | 72, 106, 108 | 3eqtr2rd 2785 |
1
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∪ 𝑁)) |