Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem4 Structured version   Visualization version   GIF version

Theorem finxpreclem4 37389
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 23-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem4.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑦,𝑛,𝑥
Allowed substitution hints:   𝑈(𝑦)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑦)

Proof of Theorem finxpreclem4
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2onn 8609 . . . . . . . 8 2o ∈ ω
2 nnon 7851 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ On)
3 2on 8450 . . . . . . . . . . . . . 14 2o ∈ On
4 oawordeu 8522 . . . . . . . . . . . . . 14 (((2o ∈ On ∧ 𝑁 ∈ On) ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
53, 4mpanl1 700 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
6 riotasbc 7365 . . . . . . . . . . . . 13 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁[(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
75, 6syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ On ∧ 2o𝑁) → [(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
8 riotaex 7351 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V
9 sbceq1g 4383 . . . . . . . . . . . . . 14 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁))
108, 9ax-mp 5 . . . . . . . . . . . . 13 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁)
11 csbov2g 7438 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜))
128, 11ax-mp 5 . . . . . . . . . . . . . . 15 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜)
138csbvargi 4401 . . . . . . . . . . . . . . . 16 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜 = (𝑜 ∈ On (2o +o 𝑜) = 𝑁)
1413oveq2i 7401 . . . . . . . . . . . . . . 15 (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1512, 14eqtri 2753 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1615eqeq1i 2735 . . . . . . . . . . . . 13 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
1710, 16bitri 275 . . . . . . . . . . . 12 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
187, 17sylib 218 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
192, 18sylan 580 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
20 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
2119, 20eqeltrd 2829 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
22 riotacl 7364 . . . . . . . . . . 11 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
23 riotaund 7386 . . . . . . . . . . . 12 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) = ∅)
24 0elon 6390 . . . . . . . . . . . 12 ∅ ∈ On
2523, 24eqeltrdi 2837 . . . . . . . . . . 11 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
2622, 25pm2.61i 182 . . . . . . . . . 10 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On
27 nnarcl 8583 . . . . . . . . . . . 12 ((2o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
283, 27mpan 690 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
291biantrur 530 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3028, 29bitr4di 289 . . . . . . . . . 10 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3126, 30ax-mp 5 . . . . . . . . 9 ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
3221, 31sylib 218 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
33 nnacom 8584 . . . . . . . 8 ((2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
341, 32, 33sylancr 587 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
35 df-2o 8438 . . . . . . . . 9 2o = suc 1o
3635oveq2i 7401 . . . . . . . 8 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o)
37 1onn 8607 . . . . . . . . 9 1o ∈ ω
38 nnasuc 8573 . . . . . . . . 9 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
3932, 37, 38sylancl 586 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4036, 39eqtrid 2777 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4134, 19, 403eqtr3d 2773 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
422adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ On)
43 sucidg 6418 . . . . . . . . . . . 12 (1o ∈ ω → 1o ∈ suc 1o)
4437, 43ax-mp 5 . . . . . . . . . . 11 1o ∈ suc 1o
4544, 35eleqtrri 2828 . . . . . . . . . 10 1o ∈ 2o
46 ssel 3943 . . . . . . . . . 10 (2o𝑁 → (1o ∈ 2o → 1o𝑁))
4745, 46mpi 20 . . . . . . . . 9 (2o𝑁 → 1o𝑁)
4847ne0d 4308 . . . . . . . 8 (2o𝑁𝑁 ≠ ∅)
4948adantl 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ≠ ∅)
50 nnlim 7859 . . . . . . . 8 (𝑁 ∈ ω → ¬ Lim 𝑁)
5150adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ¬ Lim 𝑁)
52 onsucuni3 37362 . . . . . . 7 ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁) → 𝑁 = suc 𝑁)
5342, 49, 51, 52syl3anc 1373 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc 𝑁)
54 nnacom 8584 . . . . . . . 8 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5532, 37, 54sylancl 586 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
56 suceq 6403 . . . . . . 7 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5755, 56syl 17 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5841, 53, 573eqtr3d 2773 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
59 ordom 7855 . . . . . . . . 9 Ord ω
60 ordelss 6351 . . . . . . . . 9 ((Ord ω ∧ 𝑁 ∈ ω) → 𝑁 ⊆ ω)
6159, 60mpan 690 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ⊆ ω)
62 nnfi 9137 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
63 nnunifi 9245 . . . . . . . 8 ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → 𝑁 ∈ ω)
6461, 62, 63syl2anc 584 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ ω)
6564adantr 480 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
66 nnacl 8578 . . . . . . 7 ((1o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
6737, 32, 66sylancr 587 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
68 peano4 7871 . . . . . 6 (( 𝑁 ∈ ω ∧ (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
6965, 67, 68syl2anc 584 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7058, 69mpbid 232 . . . 4 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
7170fveq2d 6865 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7271adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7332adantr 480 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
74 df-1o 8437 . . . . . . . 8 1o = suc ∅
7574fveq2i 6864 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅)
76 rdgsuc 8395 . . . . . . . 8 (∅ ∈ On → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)))
7724, 76ax-mp 5 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅))
78 opex 5427 . . . . . . . . 9 𝑁, 𝑦⟩ ∈ V
7978rdg0 8392 . . . . . . . 8 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅) = ⟨𝑁, 𝑦
8079fveq2i 6864 . . . . . . 7 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)) = (𝐹‘⟨𝑁, 𝑦⟩)
8175, 77, 803eqtri 2757 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (𝐹‘⟨𝑁, 𝑦⟩)
82 finxpreclem4.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
8382finxpreclem3 37388 . . . . . 6 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑦)⟩ = (𝐹‘⟨𝑁, 𝑦⟩))
8481, 83eqtr4id 2784 . . . . 5 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = ⟨ 𝑁, (1st𝑦)⟩)
8584fveq2d 6865 . . . 4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩))
86 2on0 8451 . . . . . 6 2o ≠ ∅
87 nnlim 7859 . . . . . . 7 (2o ∈ ω → ¬ Lim 2o)
881, 87ax-mp 5 . . . . . 6 ¬ Lim 2o
89 rdgsucuni 37364 . . . . . 6 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)))
903, 86, 88, 89mp3an 1463 . . . . 5 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
91 1oequni2o 37363 . . . . . . 7 1o = 2o
9291fveq2i 6864 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)
9392fveq2i 6864 . . . . 5 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
9490, 93eqtr4i 2756 . . . 4 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o))
9574fveq2i 6864 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅)
96 rdgsuc 8395 . . . . . 6 (∅ ∈ On → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)))
9724, 96ax-mp 5 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅))
98 opex 5427 . . . . . . 7 𝑁, (1st𝑦)⟩ ∈ V
9998rdg0 8392 . . . . . 6 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅) = ⟨ 𝑁, (1st𝑦)⟩
10099fveq2i 6864 . . . . 5 (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10195, 97, 1003eqtri 2757 . . . 4 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10285, 94, 1013eqtr4g 2790 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o))
103 1on 8449 . . . 4 1o ∈ On
104 rdgeqoa 37365 . . . 4 ((2o ∈ On ∧ 1o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
1053, 103, 104mp3an12 1453 . . 3 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
10673, 102, 105sylc 65 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
10719fveq2d 6865 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
108107adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
10972, 106, 1083eqtr2rd 2772 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  ∃!wreu 3354  Vcvv 3450  [wsbc 3756  csb 3865  wss 3917  c0 4299  ifcif 4491  cop 4598   cuni 4874   × cxp 5639  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  cfv 6514  crio 7346  (class class class)co 7390  cmpo 7392  ωcom 7845  1st c1st 7969  reccrdg 8380  1oc1o 8430  2oc2o 8431   +o coa 8434  Fincfn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-en 8922  df-fin 8925
This theorem is referenced by:  finxpsuclem  37392
  Copyright terms: Public domain W3C validator