Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem4 Structured version   Visualization version   GIF version

Theorem finxpreclem4 37372
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 23-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem4.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑦,𝑛,𝑥
Allowed substitution hints:   𝑈(𝑦)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑦)

Proof of Theorem finxpreclem4
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2onn 8560 . . . . . . . 8 2o ∈ ω
2 nnon 7805 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ On)
3 2on 8401 . . . . . . . . . . . . . 14 2o ∈ On
4 oawordeu 8473 . . . . . . . . . . . . . 14 (((2o ∈ On ∧ 𝑁 ∈ On) ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
53, 4mpanl1 700 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
6 riotasbc 7324 . . . . . . . . . . . . 13 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁[(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
75, 6syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ On ∧ 2o𝑁) → [(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
8 riotaex 7310 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V
9 sbceq1g 4368 . . . . . . . . . . . . . 14 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁))
108, 9ax-mp 5 . . . . . . . . . . . . 13 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁)
11 csbov2g 7397 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜))
128, 11ax-mp 5 . . . . . . . . . . . . . . 15 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜)
138csbvargi 4386 . . . . . . . . . . . . . . . 16 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜 = (𝑜 ∈ On (2o +o 𝑜) = 𝑁)
1413oveq2i 7360 . . . . . . . . . . . . . . 15 (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1512, 14eqtri 2752 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1615eqeq1i 2734 . . . . . . . . . . . . 13 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
1710, 16bitri 275 . . . . . . . . . . . 12 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
187, 17sylib 218 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
192, 18sylan 580 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
20 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
2119, 20eqeltrd 2828 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
22 riotacl 7323 . . . . . . . . . . 11 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
23 riotaund 7345 . . . . . . . . . . . 12 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) = ∅)
24 0elon 6362 . . . . . . . . . . . 12 ∅ ∈ On
2523, 24eqeltrdi 2836 . . . . . . . . . . 11 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
2622, 25pm2.61i 182 . . . . . . . . . 10 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On
27 nnarcl 8534 . . . . . . . . . . . 12 ((2o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
283, 27mpan 690 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
291biantrur 530 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3028, 29bitr4di 289 . . . . . . . . . 10 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3126, 30ax-mp 5 . . . . . . . . 9 ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
3221, 31sylib 218 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
33 nnacom 8535 . . . . . . . 8 ((2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
341, 32, 33sylancr 587 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
35 df-2o 8389 . . . . . . . . 9 2o = suc 1o
3635oveq2i 7360 . . . . . . . 8 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o)
37 1onn 8558 . . . . . . . . 9 1o ∈ ω
38 nnasuc 8524 . . . . . . . . 9 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
3932, 37, 38sylancl 586 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4036, 39eqtrid 2776 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4134, 19, 403eqtr3d 2772 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
422adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ On)
43 sucidg 6390 . . . . . . . . . . . 12 (1o ∈ ω → 1o ∈ suc 1o)
4437, 43ax-mp 5 . . . . . . . . . . 11 1o ∈ suc 1o
4544, 35eleqtrri 2827 . . . . . . . . . 10 1o ∈ 2o
46 ssel 3929 . . . . . . . . . 10 (2o𝑁 → (1o ∈ 2o → 1o𝑁))
4745, 46mpi 20 . . . . . . . . 9 (2o𝑁 → 1o𝑁)
4847ne0d 4293 . . . . . . . 8 (2o𝑁𝑁 ≠ ∅)
4948adantl 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ≠ ∅)
50 nnlim 7813 . . . . . . . 8 (𝑁 ∈ ω → ¬ Lim 𝑁)
5150adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ¬ Lim 𝑁)
52 onsucuni3 37345 . . . . . . 7 ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁) → 𝑁 = suc 𝑁)
5342, 49, 51, 52syl3anc 1373 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc 𝑁)
54 nnacom 8535 . . . . . . . 8 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5532, 37, 54sylancl 586 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
56 suceq 6375 . . . . . . 7 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5755, 56syl 17 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5841, 53, 573eqtr3d 2772 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
59 ordom 7809 . . . . . . . . 9 Ord ω
60 ordelss 6323 . . . . . . . . 9 ((Ord ω ∧ 𝑁 ∈ ω) → 𝑁 ⊆ ω)
6159, 60mpan 690 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ⊆ ω)
62 nnfi 9081 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
63 nnunifi 9180 . . . . . . . 8 ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → 𝑁 ∈ ω)
6461, 62, 63syl2anc 584 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ ω)
6564adantr 480 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
66 nnacl 8529 . . . . . . 7 ((1o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
6737, 32, 66sylancr 587 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
68 peano4 7825 . . . . . 6 (( 𝑁 ∈ ω ∧ (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
6965, 67, 68syl2anc 584 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7058, 69mpbid 232 . . . 4 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
7170fveq2d 6826 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7271adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7332adantr 480 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
74 df-1o 8388 . . . . . . . 8 1o = suc ∅
7574fveq2i 6825 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅)
76 rdgsuc 8346 . . . . . . . 8 (∅ ∈ On → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)))
7724, 76ax-mp 5 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅))
78 opex 5407 . . . . . . . . 9 𝑁, 𝑦⟩ ∈ V
7978rdg0 8343 . . . . . . . 8 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅) = ⟨𝑁, 𝑦
8079fveq2i 6825 . . . . . . 7 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)) = (𝐹‘⟨𝑁, 𝑦⟩)
8175, 77, 803eqtri 2756 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (𝐹‘⟨𝑁, 𝑦⟩)
82 finxpreclem4.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
8382finxpreclem3 37371 . . . . . 6 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑦)⟩ = (𝐹‘⟨𝑁, 𝑦⟩))
8481, 83eqtr4id 2783 . . . . 5 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = ⟨ 𝑁, (1st𝑦)⟩)
8584fveq2d 6826 . . . 4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩))
86 2on0 8402 . . . . . 6 2o ≠ ∅
87 nnlim 7813 . . . . . . 7 (2o ∈ ω → ¬ Lim 2o)
881, 87ax-mp 5 . . . . . 6 ¬ Lim 2o
89 rdgsucuni 37347 . . . . . 6 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)))
903, 86, 88, 89mp3an 1463 . . . . 5 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
91 1oequni2o 37346 . . . . . . 7 1o = 2o
9291fveq2i 6825 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)
9392fveq2i 6825 . . . . 5 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
9490, 93eqtr4i 2755 . . . 4 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o))
9574fveq2i 6825 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅)
96 rdgsuc 8346 . . . . . 6 (∅ ∈ On → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)))
9724, 96ax-mp 5 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅))
98 opex 5407 . . . . . . 7 𝑁, (1st𝑦)⟩ ∈ V
9998rdg0 8343 . . . . . 6 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅) = ⟨ 𝑁, (1st𝑦)⟩
10099fveq2i 6825 . . . . 5 (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10195, 97, 1003eqtri 2756 . . . 4 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10285, 94, 1013eqtr4g 2789 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o))
103 1on 8400 . . . 4 1o ∈ On
104 rdgeqoa 37348 . . . 4 ((2o ∈ On ∧ 1o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
1053, 103, 104mp3an12 1453 . . 3 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
10673, 102, 105sylc 65 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
10719fveq2d 6826 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
108107adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
10972, 106, 1083eqtr2rd 2771 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  ∃!wreu 3341  Vcvv 3436  [wsbc 3742  csb 3851  wss 3903  c0 4284  ifcif 4476  cop 4583   cuni 4858   × cxp 5617  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309  cfv 6482  crio 7305  (class class class)co 7349  cmpo 7351  ωcom 7799  1st c1st 7922  reccrdg 8331  1oc1o 8381  2oc2o 8382   +o coa 8385  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-en 8873  df-fin 8876
This theorem is referenced by:  finxpsuclem  37375
  Copyright terms: Public domain W3C validator