Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem4 Structured version   Visualization version   GIF version

Theorem finxpreclem4 37360
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 23-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem4.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑦,𝑛,𝑥
Allowed substitution hints:   𝑈(𝑦)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑦)

Proof of Theorem finxpreclem4
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2onn 8698 . . . . . . . 8 2o ∈ ω
2 nnon 7909 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ On)
3 2on 8536 . . . . . . . . . . . . . 14 2o ∈ On
4 oawordeu 8611 . . . . . . . . . . . . . 14 (((2o ∈ On ∧ 𝑁 ∈ On) ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
53, 4mpanl1 699 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
6 riotasbc 7423 . . . . . . . . . . . . 13 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁[(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
75, 6syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ On ∧ 2o𝑁) → [(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
8 riotaex 7408 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V
9 sbceq1g 4440 . . . . . . . . . . . . . 14 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁))
108, 9ax-mp 5 . . . . . . . . . . . . 13 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁)
11 csbov2g 7496 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜))
128, 11ax-mp 5 . . . . . . . . . . . . . . 15 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜)
138csbvargi 4458 . . . . . . . . . . . . . . . 16 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜 = (𝑜 ∈ On (2o +o 𝑜) = 𝑁)
1413oveq2i 7459 . . . . . . . . . . . . . . 15 (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1512, 14eqtri 2768 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1615eqeq1i 2745 . . . . . . . . . . . . 13 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
1710, 16bitri 275 . . . . . . . . . . . 12 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
187, 17sylib 218 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
192, 18sylan 579 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
20 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
2119, 20eqeltrd 2844 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
22 riotacl 7422 . . . . . . . . . . 11 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
23 riotaund 7444 . . . . . . . . . . . 12 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) = ∅)
24 0elon 6449 . . . . . . . . . . . 12 ∅ ∈ On
2523, 24eqeltrdi 2852 . . . . . . . . . . 11 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
2622, 25pm2.61i 182 . . . . . . . . . 10 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On
27 nnarcl 8672 . . . . . . . . . . . 12 ((2o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
283, 27mpan 689 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
291biantrur 530 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3028, 29bitr4di 289 . . . . . . . . . 10 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3126, 30ax-mp 5 . . . . . . . . 9 ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
3221, 31sylib 218 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
33 nnacom 8673 . . . . . . . 8 ((2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
341, 32, 33sylancr 586 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
35 df-2o 8523 . . . . . . . . 9 2o = suc 1o
3635oveq2i 7459 . . . . . . . 8 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o)
37 1onn 8696 . . . . . . . . 9 1o ∈ ω
38 nnasuc 8662 . . . . . . . . 9 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
3932, 37, 38sylancl 585 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4036, 39eqtrid 2792 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4134, 19, 403eqtr3d 2788 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
422adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ On)
43 sucidg 6476 . . . . . . . . . . . 12 (1o ∈ ω → 1o ∈ suc 1o)
4437, 43ax-mp 5 . . . . . . . . . . 11 1o ∈ suc 1o
4544, 35eleqtrri 2843 . . . . . . . . . 10 1o ∈ 2o
46 ssel 4002 . . . . . . . . . 10 (2o𝑁 → (1o ∈ 2o → 1o𝑁))
4745, 46mpi 20 . . . . . . . . 9 (2o𝑁 → 1o𝑁)
4847ne0d 4365 . . . . . . . 8 (2o𝑁𝑁 ≠ ∅)
4948adantl 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ≠ ∅)
50 nnlim 7917 . . . . . . . 8 (𝑁 ∈ ω → ¬ Lim 𝑁)
5150adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ¬ Lim 𝑁)
52 onsucuni3 37333 . . . . . . 7 ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁) → 𝑁 = suc 𝑁)
5342, 49, 51, 52syl3anc 1371 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc 𝑁)
54 nnacom 8673 . . . . . . . 8 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5532, 37, 54sylancl 585 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
56 suceq 6461 . . . . . . 7 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5755, 56syl 17 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5841, 53, 573eqtr3d 2788 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
59 ordom 7913 . . . . . . . . 9 Ord ω
60 ordelss 6411 . . . . . . . . 9 ((Ord ω ∧ 𝑁 ∈ ω) → 𝑁 ⊆ ω)
6159, 60mpan 689 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ⊆ ω)
62 nnfi 9233 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
63 nnunifi 9355 . . . . . . . 8 ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → 𝑁 ∈ ω)
6461, 62, 63syl2anc 583 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ ω)
6564adantr 480 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
66 nnacl 8667 . . . . . . 7 ((1o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
6737, 32, 66sylancr 586 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
68 peano4 7931 . . . . . 6 (( 𝑁 ∈ ω ∧ (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
6965, 67, 68syl2anc 583 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7058, 69mpbid 232 . . . 4 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
7170fveq2d 6924 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7271adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7332adantr 480 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
74 df-1o 8522 . . . . . . . 8 1o = suc ∅
7574fveq2i 6923 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅)
76 rdgsuc 8480 . . . . . . . 8 (∅ ∈ On → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)))
7724, 76ax-mp 5 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅))
78 opex 5484 . . . . . . . . 9 𝑁, 𝑦⟩ ∈ V
7978rdg0 8477 . . . . . . . 8 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅) = ⟨𝑁, 𝑦
8079fveq2i 6923 . . . . . . 7 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)) = (𝐹‘⟨𝑁, 𝑦⟩)
8175, 77, 803eqtri 2772 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (𝐹‘⟨𝑁, 𝑦⟩)
82 finxpreclem4.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
8382finxpreclem3 37359 . . . . . 6 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑦)⟩ = (𝐹‘⟨𝑁, 𝑦⟩))
8481, 83eqtr4id 2799 . . . . 5 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = ⟨ 𝑁, (1st𝑦)⟩)
8584fveq2d 6924 . . . 4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩))
86 2on0 8538 . . . . . 6 2o ≠ ∅
87 nnlim 7917 . . . . . . 7 (2o ∈ ω → ¬ Lim 2o)
881, 87ax-mp 5 . . . . . 6 ¬ Lim 2o
89 rdgsucuni 37335 . . . . . 6 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)))
903, 86, 88, 89mp3an 1461 . . . . 5 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
91 1oequni2o 37334 . . . . . . 7 1o = 2o
9291fveq2i 6923 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)
9392fveq2i 6923 . . . . 5 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
9490, 93eqtr4i 2771 . . . 4 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o))
9574fveq2i 6923 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅)
96 rdgsuc 8480 . . . . . 6 (∅ ∈ On → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)))
9724, 96ax-mp 5 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅))
98 opex 5484 . . . . . . 7 𝑁, (1st𝑦)⟩ ∈ V
9998rdg0 8477 . . . . . 6 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅) = ⟨ 𝑁, (1st𝑦)⟩
10099fveq2i 6923 . . . . 5 (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10195, 97, 1003eqtri 2772 . . . 4 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10285, 94, 1013eqtr4g 2805 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o))
103 1on 8534 . . . 4 1o ∈ On
104 rdgeqoa 37336 . . . 4 ((2o ∈ On ∧ 1o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
1053, 103, 104mp3an12 1451 . . 3 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
10673, 102, 105sylc 65 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
10719fveq2d 6924 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
108107adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
10972, 106, 1083eqtr2rd 2787 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  ∃!wreu 3386  Vcvv 3488  [wsbc 3804  csb 3921  wss 3976  c0 4352  ifcif 4548  cop 4654   cuni 4931   × cxp 5698  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  cfv 6573  crio 7403  (class class class)co 7448  cmpo 7450  ωcom 7903  1st c1st 8028  reccrdg 8465  1oc1o 8515  2oc2o 8516   +o coa 8519  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-en 9004  df-fin 9007
This theorem is referenced by:  finxpsuclem  37363
  Copyright terms: Public domain W3C validator