| Step | Hyp | Ref
| Expression |
| 1 | | 2onn 8654 |
. . . . . . . 8
⊢
2o ∈ ω |
| 2 | | nnon 7867 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → 𝑁 ∈ On) |
| 3 | | 2on 8494 |
. . . . . . . . . . . . . 14
⊢
2o ∈ On |
| 4 | | oawordeu 8567 |
. . . . . . . . . . . . . 14
⊢
(((2o ∈ On ∧ 𝑁 ∈ On) ∧ 2o ⊆
𝑁) → ∃!𝑜 ∈ On (2o
+o 𝑜) = 𝑁) |
| 5 | 3, 4 | mpanl1 700 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ On ∧ 2o
⊆ 𝑁) →
∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁) |
| 6 | | riotasbc 7380 |
. . . . . . . . . . . . 13
⊢
(∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → [(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ On ∧ 2o
⊆ 𝑁) →
[(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁) |
| 8 | | riotaex 7366 |
. . . . . . . . . . . . . 14
⊢
(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ V |
| 9 | | sbceq1g 4392 |
. . . . . . . . . . . . . 14
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ V →
([(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ ⦋(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = 𝑁)) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
([(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ ⦋(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = 𝑁) |
| 11 | | csbov2g 7453 |
. . . . . . . . . . . . . . . 16
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ V →
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = (2o
+o ⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌𝑜)) |
| 12 | 8, 11 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = (2o
+o ⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌𝑜) |
| 13 | 8 | csbvargi 4410 |
. . . . . . . . . . . . . . . 16
⊢
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌𝑜 = (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) |
| 14 | 13 | oveq2i 7416 |
. . . . . . . . . . . . . . 15
⊢
(2o +o ⦋(℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) / 𝑜⦌𝑜) = (2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) |
| 15 | 12, 14 | eqtri 2758 |
. . . . . . . . . . . . . 14
⊢
⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = (2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) |
| 16 | 15 | eqeq1i 2740 |
. . . . . . . . . . . . 13
⊢
(⦋(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜⦌(2o +o
𝑜) = 𝑁 ↔ (2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) = 𝑁) |
| 17 | 10, 16 | bitri 275 |
. . . . . . . . . . . 12
⊢
([(℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ (2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) = 𝑁) |
| 18 | 7, 17 | sylib 218 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ On ∧ 2o
⊆ 𝑁) →
(2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁) |
| 19 | 2, 18 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁) |
| 20 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 ∈
ω) |
| 21 | 19, 20 | eqeltrd 2834 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) |
| 22 | | riotacl 7379 |
. . . . . . . . . . 11
⊢
(∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) |
| 23 | | riotaund 7401 |
. . . . . . . . . . . 12
⊢ (¬
∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) = ∅) |
| 24 | | 0elon 6407 |
. . . . . . . . . . . 12
⊢ ∅
∈ On |
| 25 | 23, 24 | eqeltrdi 2842 |
. . . . . . . . . . 11
⊢ (¬
∃!𝑜 ∈ On
(2o +o 𝑜) = 𝑁 → (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) |
| 26 | 22, 25 | pm2.61i 182 |
. . . . . . . . . 10
⊢
(℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ On |
| 27 | | nnarcl 8628 |
. . . . . . . . . . . 12
⊢
((2o ∈ On ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) → ((2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o
∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))) |
| 28 | 3, 27 | mpan 690 |
. . . . . . . . . . 11
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o
∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))) |
| 29 | 1 | biantrur 530 |
. . . . . . . . . . 11
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω ↔ (2o
∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)) |
| 30 | 28, 29 | bitr4di 289 |
. . . . . . . . . 10
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω)) |
| 31 | 26, 30 | ax-mp 5 |
. . . . . . . . 9
⊢
((2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω) |
| 32 | 21, 31 | sylib 218 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω) |
| 33 | | nnacom 8629 |
. . . . . . . 8
⊢
((2o ∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (2o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o
2o)) |
| 34 | 1, 32, 33 | sylancr 587 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (2o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o
2o)) |
| 35 | | df-2o 8481 |
. . . . . . . . 9
⊢
2o = suc 1o |
| 36 | 35 | oveq2i 7416 |
. . . . . . . 8
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 2o) =
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o suc
1o) |
| 37 | | 1onn 8652 |
. . . . . . . . 9
⊢
1o ∈ ω |
| 38 | | nnasuc 8618 |
. . . . . . . . 9
⊢
(((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈
ω) → ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
| 39 | 32, 37, 38 | sylancl 586 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
| 40 | 36, 39 | eqtrid 2782 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 2o) = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
| 41 | 34, 19, 40 | 3eqtr3d 2778 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 = suc
((℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) +o
1o)) |
| 42 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 ∈
On) |
| 43 | | sucidg 6435 |
. . . . . . . . . . . 12
⊢
(1o ∈ ω → 1o ∈ suc
1o) |
| 44 | 37, 43 | ax-mp 5 |
. . . . . . . . . . 11
⊢
1o ∈ suc 1o |
| 45 | 44, 35 | eleqtrri 2833 |
. . . . . . . . . 10
⊢
1o ∈ 2o |
| 46 | | ssel 3952 |
. . . . . . . . . 10
⊢
(2o ⊆ 𝑁 → (1o ∈ 2o
→ 1o ∈ 𝑁)) |
| 47 | 45, 46 | mpi 20 |
. . . . . . . . 9
⊢
(2o ⊆ 𝑁 → 1o ∈ 𝑁) |
| 48 | 47 | ne0d 4317 |
. . . . . . . 8
⊢
(2o ⊆ 𝑁 → 𝑁 ≠ ∅) |
| 49 | 48 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 ≠
∅) |
| 50 | | nnlim 7875 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → ¬ Lim
𝑁) |
| 51 | 50 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ¬ Lim 𝑁) |
| 52 | | onsucuni3 37385 |
. . . . . . 7
⊢ ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim
𝑁) → 𝑁 = suc ∪ 𝑁) |
| 53 | 42, 49, 51, 52 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ 𝑁 = suc ∪ 𝑁) |
| 54 | | nnacom 8629 |
. . . . . . . 8
⊢
(((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈
ω) → ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) =
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
| 55 | 32, 37, 54 | sylancl 586 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 1o) =
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
| 56 | | suceq 6419 |
. . . . . . 7
⊢
(((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) +o 1o) =
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) → suc ((℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁) +o 1o) =
suc (1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
| 57 | 55, 56 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ suc ((℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc
(1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))) |
| 58 | 41, 53, 57 | 3eqtr3d 2778 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ suc ∪ 𝑁 = suc (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) |
| 59 | | ordom 7871 |
. . . . . . . . 9
⊢ Ord
ω |
| 60 | | ordelss 6368 |
. . . . . . . . 9
⊢ ((Ord
ω ∧ 𝑁 ∈
ω) → 𝑁 ⊆
ω) |
| 61 | 59, 60 | mpan 690 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → 𝑁 ⊆
ω) |
| 62 | | nnfi 9181 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → 𝑁 ∈ Fin) |
| 63 | | nnunifi 9299 |
. . . . . . . 8
⊢ ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → ∪ 𝑁
∈ ω) |
| 64 | 61, 62, 63 | syl2anc 584 |
. . . . . . 7
⊢ (𝑁 ∈ ω → ∪ 𝑁
∈ ω) |
| 65 | 64 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ∪ 𝑁 ∈ ω) |
| 66 | | nnacl 8623 |
. . . . . . 7
⊢
((1o ∈ ω ∧ (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) |
| 67 | 37, 32, 66 | sylancr 587 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (1o +o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) |
| 68 | | peano4 7888 |
. . . . . 6
⊢ ((∪ 𝑁
∈ ω ∧ (1o +o (℩𝑜 ∈ On (2o
+o 𝑜) = 𝑁)) ∈ ω) → (suc
∪ 𝑁 = suc (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) ↔ ∪ 𝑁 = (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)))) |
| 69 | 65, 67, 68 | syl2anc 584 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (suc ∪ 𝑁 = suc (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)) ↔ ∪ 𝑁 = (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁)))) |
| 70 | 58, 69 | mpbid 232 |
. . . 4
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ ∪ 𝑁 = (1o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) |
| 71 | 70 | fveq2d 6880 |
. . 3
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘∪
𝑁) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)))) |
| 72 | 71 | adantr 480 |
. 2
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘∪
𝑁) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)))) |
| 73 | 32 | adantr 480 |
. . 3
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) →
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω) |
| 74 | | df-1o 8480 |
. . . . . . . 8
⊢
1o = suc ∅ |
| 75 | 74 | fveq2i 6879 |
. . . . . . 7
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = (rec(𝐹, 〈𝑁, 𝑦〉)‘suc ∅) |
| 76 | | rdgsuc 8438 |
. . . . . . . 8
⊢ (∅
∈ On → (rec(𝐹,
〈𝑁, 𝑦〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∅))) |
| 77 | 24, 76 | ax-mp 5 |
. . . . . . 7
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∅)) |
| 78 | | opex 5439 |
. . . . . . . . 9
⊢
〈𝑁, 𝑦〉 ∈ V |
| 79 | 78 | rdg0 8435 |
. . . . . . . 8
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘∅) = 〈𝑁, 𝑦〉 |
| 80 | 79 | fveq2i 6879 |
. . . . . . 7
⊢ (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∅)) = (𝐹‘〈𝑁, 𝑦〉) |
| 81 | 75, 77, 80 | 3eqtri 2762 |
. . . . . 6
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = (𝐹‘〈𝑁, 𝑦〉) |
| 82 | | finxpreclem4.1 |
. . . . . . 7
⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) |
| 83 | 82 | finxpreclem3 37411 |
. . . . . 6
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → 〈∪ 𝑁,
(1st ‘𝑦)〉 = (𝐹‘〈𝑁, 𝑦〉)) |
| 84 | 81, 83 | eqtr4id 2789 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = 〈∪ 𝑁,
(1st ‘𝑦)〉) |
| 85 | 84 | fveq2d 6880 |
. . . 4
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘1o)) = (𝐹‘〈∪ 𝑁,
(1st ‘𝑦)〉)) |
| 86 | | 2on0 8496 |
. . . . . 6
⊢
2o ≠ ∅ |
| 87 | | nnlim 7875 |
. . . . . . 7
⊢
(2o ∈ ω → ¬ Lim
2o) |
| 88 | 1, 87 | ax-mp 5 |
. . . . . 6
⊢ ¬
Lim 2o |
| 89 | | rdgsucuni 37387 |
. . . . . 6
⊢
((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬
Lim 2o) → (rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o))) |
| 90 | 3, 86, 88, 89 | mp3an 1463 |
. . . . 5
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o)) |
| 91 | | 1oequni2o 37386 |
. . . . . . 7
⊢
1o = ∪
2o |
| 92 | 91 | fveq2i 6879 |
. . . . . 6
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘1o) = (rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o) |
| 93 | 92 | fveq2i 6879 |
. . . . 5
⊢ (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘1o)) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘∪
2o)) |
| 94 | 90, 93 | eqtr4i 2761 |
. . . 4
⊢
(rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (𝐹‘(rec(𝐹, 〈𝑁, 𝑦〉)‘1o)) |
| 95 | 74 | fveq2i 6879 |
. . . . 5
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘suc ∅) |
| 96 | | rdgsuc 8438 |
. . . . . 6
⊢ (∅
∈ On → (rec(𝐹,
〈∪ 𝑁, (1st ‘𝑦)〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∅))) |
| 97 | 24, 96 | ax-mp 5 |
. . . . 5
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘suc ∅) = (𝐹‘(rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∅)) |
| 98 | | opex 5439 |
. . . . . . 7
⊢
〈∪ 𝑁, (1st ‘𝑦)〉 ∈ V |
| 99 | 98 | rdg0 8435 |
. . . . . 6
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘∅) = 〈∪ 𝑁,
(1st ‘𝑦)〉 |
| 100 | 99 | fveq2i 6879 |
. . . . 5
⊢ (𝐹‘(rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∅)) =
(𝐹‘〈∪ 𝑁,
(1st ‘𝑦)〉) |
| 101 | 95, 97, 100 | 3eqtri 2762 |
. . . 4
⊢
(rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) = (𝐹‘〈∪ 𝑁,
(1st ‘𝑦)〉) |
| 102 | 85, 94, 101 | 3eqtr4g 2795 |
. . 3
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o)) |
| 103 | | 1on 8492 |
. . . 4
⊢
1o ∈ On |
| 104 | | rdgeqoa 37388 |
. . . 4
⊢
((2o ∈ On ∧ 1o ∈ On ∧
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) →
(rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))))) |
| 105 | 3, 103, 104 | mp3an12 1453 |
. . 3
⊢
((℩𝑜
∈ On (2o +o 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, 〈𝑁, 𝑦〉)‘2o) = (rec(𝐹, 〈∪ 𝑁,
(1st ‘𝑦)〉)‘1o) →
(rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁))))) |
| 106 | 73, 102, 105 | sylc 65 |
. 2
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘(1o
+o (℩𝑜 ∈ On (2o +o 𝑜) = 𝑁)))) |
| 107 | 19 | fveq2d 6880 |
. . 3
⊢ ((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
→ (rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁)) |
| 108 | 107 | adantr 480 |
. 2
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘(2o +o
(℩𝑜 ∈ On
(2o +o 𝑜) = 𝑁))) = (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁)) |
| 109 | 72, 106, 108 | 3eqtr2rd 2777 |
1
⊢ (((𝑁 ∈ ω ∧
2o ⊆ 𝑁)
∧ 𝑦 ∈ (V ×
𝑈)) → (rec(𝐹, 〈𝑁, 𝑦〉)‘𝑁) = (rec(𝐹, 〈∪ 𝑁, (1st ‘𝑦)〉)‘∪ 𝑁)) |