Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem4 Structured version   Visualization version   GIF version

Theorem finxpreclem4 37438
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 23-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem4.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥   𝑦,𝑛,𝑥
Allowed substitution hints:   𝑈(𝑦)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑦)

Proof of Theorem finxpreclem4
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2onn 8557 . . . . . . . 8 2o ∈ ω
2 nnon 7802 . . . . . . . . . . 11 (𝑁 ∈ ω → 𝑁 ∈ On)
3 2on 8398 . . . . . . . . . . . . . 14 2o ∈ On
4 oawordeu 8470 . . . . . . . . . . . . . 14 (((2o ∈ On ∧ 𝑁 ∈ On) ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
53, 4mpanl1 700 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 2o𝑁) → ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁)
6 riotasbc 7321 . . . . . . . . . . . . 13 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁[(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
75, 6syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ On ∧ 2o𝑁) → [(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁)
8 riotaex 7307 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V
9 sbceq1g 4364 . . . . . . . . . . . . . 14 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁))
108, 9ax-mp 5 . . . . . . . . . . . . 13 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁)
11 csbov2g 7394 . . . . . . . . . . . . . . . 16 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ V → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜))
128, 11ax-mp 5 . . . . . . . . . . . . . . 15 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜)
138csbvargi 4382 . . . . . . . . . . . . . . . 16 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜 = (𝑜 ∈ On (2o +o 𝑜) = 𝑁)
1413oveq2i 7357 . . . . . . . . . . . . . . 15 (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1512, 14eqtri 2754 . . . . . . . . . . . . . 14 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))
1615eqeq1i 2736 . . . . . . . . . . . . 13 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜(2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
1710, 16bitri 275 . . . . . . . . . . . 12 ([(𝑜 ∈ On (2o +o 𝑜) = 𝑁) / 𝑜](2o +o 𝑜) = 𝑁 ↔ (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
187, 17sylib 218 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
192, 18sylan 580 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = 𝑁)
20 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
2119, 20eqeltrd 2831 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
22 riotacl 7320 . . . . . . . . . . 11 (∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
23 riotaund 7342 . . . . . . . . . . . 12 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) = ∅)
24 0elon 6361 . . . . . . . . . . . 12 ∅ ∈ On
2523, 24eqeltrdi 2839 . . . . . . . . . . 11 (¬ ∃!𝑜 ∈ On (2o +o 𝑜) = 𝑁 → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On)
2622, 25pm2.61i 182 . . . . . . . . . 10 (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On
27 nnarcl 8531 . . . . . . . . . . . 12 ((2o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On) → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
283, 27mpan 690 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)))
291biantrur 530 . . . . . . . . . . 11 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ↔ (2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3028, 29bitr4di 289 . . . . . . . . . 10 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ On → ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω))
3126, 30ax-mp 5 . . . . . . . . 9 ((2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω ↔ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
3221, 31sylib 218 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
33 nnacom 8532 . . . . . . . 8 ((2o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
341, 32, 33sylancr 587 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → (2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o))
35 df-2o 8386 . . . . . . . . 9 2o = suc 1o
3635oveq2i 7357 . . . . . . . 8 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o)
37 1onn 8555 . . . . . . . . 9 1o ∈ ω
38 nnasuc 8521 . . . . . . . . 9 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
3932, 37, 38sylancl 586 . . . . . . . 8 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o suc 1o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4036, 39eqtrid 2778 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 2o) = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
4134, 19, 403eqtr3d 2774 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o))
422adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ On)
43 sucidg 6389 . . . . . . . . . . . 12 (1o ∈ ω → 1o ∈ suc 1o)
4437, 43ax-mp 5 . . . . . . . . . . 11 1o ∈ suc 1o
4544, 35eleqtrri 2830 . . . . . . . . . 10 1o ∈ 2o
46 ssel 3923 . . . . . . . . . 10 (2o𝑁 → (1o ∈ 2o → 1o𝑁))
4745, 46mpi 20 . . . . . . . . 9 (2o𝑁 → 1o𝑁)
4847ne0d 4289 . . . . . . . 8 (2o𝑁𝑁 ≠ ∅)
4948adantl 481 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ≠ ∅)
50 nnlim 7810 . . . . . . . 8 (𝑁 ∈ ω → ¬ Lim 𝑁)
5150adantr 480 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ¬ Lim 𝑁)
52 onsucuni3 37411 . . . . . . 7 ((𝑁 ∈ On ∧ 𝑁 ≠ ∅ ∧ ¬ Lim 𝑁) → 𝑁 = suc 𝑁)
5342, 49, 51, 52syl3anc 1373 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = suc 𝑁)
54 nnacom 8532 . . . . . . . 8 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω ∧ 1o ∈ ω) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5532, 37, 54sylancl 586 . . . . . . 7 ((𝑁 ∈ ω ∧ 2o𝑁) → ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
56 suceq 6374 . . . . . . 7 (((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5755, 56syl 17 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → suc ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) +o 1o) = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
5841, 53, 573eqtr3d 2774 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
59 ordom 7806 . . . . . . . . 9 Ord ω
60 ordelss 6322 . . . . . . . . 9 ((Ord ω ∧ 𝑁 ∈ ω) → 𝑁 ⊆ ω)
6159, 60mpan 690 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ⊆ ω)
62 nnfi 9077 . . . . . . . 8 (𝑁 ∈ ω → 𝑁 ∈ Fin)
63 nnunifi 9175 . . . . . . . 8 ((𝑁 ⊆ ω ∧ 𝑁 ∈ Fin) → 𝑁 ∈ ω)
6461, 62, 63syl2anc 584 . . . . . . 7 (𝑁 ∈ ω → 𝑁 ∈ ω)
6564adantr 480 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 ∈ ω)
66 nnacl 8526 . . . . . . 7 ((1o ∈ ω ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
6737, 32, 66sylancr 587 . . . . . 6 ((𝑁 ∈ ω ∧ 2o𝑁) → (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω)
68 peano4 7822 . . . . . 6 (( 𝑁 ∈ ω ∧ (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ∈ ω) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
6965, 67, 68syl2anc 584 . . . . 5 ((𝑁 ∈ ω ∧ 2o𝑁) → (suc 𝑁 = suc (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)) ↔ 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7058, 69mpbid 232 . . . 4 ((𝑁 ∈ ω ∧ 2o𝑁) → 𝑁 = (1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))
7170fveq2d 6826 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7271adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
7332adantr 480 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω)
74 df-1o 8385 . . . . . . . 8 1o = suc ∅
7574fveq2i 6825 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅)
76 rdgsuc 8343 . . . . . . . 8 (∅ ∈ On → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)))
7724, 76ax-mp 5 . . . . . . 7 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅))
78 opex 5402 . . . . . . . . 9 𝑁, 𝑦⟩ ∈ V
7978rdg0 8340 . . . . . . . 8 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅) = ⟨𝑁, 𝑦
8079fveq2i 6825 . . . . . . 7 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘∅)) = (𝐹‘⟨𝑁, 𝑦⟩)
8175, 77, 803eqtri 2758 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (𝐹‘⟨𝑁, 𝑦⟩)
82 finxpreclem4.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
8382finxpreclem3 37437 . . . . . 6 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ⟨ 𝑁, (1st𝑦)⟩ = (𝐹‘⟨𝑁, 𝑦⟩))
8481, 83eqtr4id 2785 . . . . 5 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = ⟨ 𝑁, (1st𝑦)⟩)
8584fveq2d 6826 . . . 4 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩))
86 2on0 8399 . . . . . 6 2o ≠ ∅
87 nnlim 7810 . . . . . . 7 (2o ∈ ω → ¬ Lim 2o)
881, 87ax-mp 5 . . . . . 6 ¬ Lim 2o
89 rdgsucuni 37413 . . . . . 6 ((2o ∈ On ∧ 2o ≠ ∅ ∧ ¬ Lim 2o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)))
903, 86, 88, 89mp3an 1463 . . . . 5 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
91 1oequni2o 37412 . . . . . . 7 1o = 2o
9291fveq2i 6825 . . . . . 6 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o)
9392fveq2i 6825 . . . . 5 (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o)) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘ 2o))
9490, 93eqtr4i 2757 . . . 4 (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (𝐹‘(rec(𝐹, ⟨𝑁, 𝑦⟩)‘1o))
9574fveq2i 6825 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅)
96 rdgsuc 8343 . . . . . 6 (∅ ∈ On → (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)))
9724, 96ax-mp 5 . . . . 5 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘suc ∅) = (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅))
98 opex 5402 . . . . . . 7 𝑁, (1st𝑦)⟩ ∈ V
9998rdg0 8340 . . . . . 6 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅) = ⟨ 𝑁, (1st𝑦)⟩
10099fveq2i 6825 . . . . 5 (𝐹‘(rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘∅)) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10195, 97, 1003eqtri 2758 . . . 4 (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) = (𝐹‘⟨ 𝑁, (1st𝑦)⟩)
10285, 94, 1013eqtr4g 2791 . . 3 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o))
103 1on 8397 . . . 4 1o ∈ On
104 rdgeqoa 37414 . . . 4 ((2o ∈ On ∧ 1o ∈ On ∧ (𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω) → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
1053, 103, 104mp3an12 1453 . . 3 ((𝑜 ∈ On (2o +o 𝑜) = 𝑁) ∈ ω → ((rec(𝐹, ⟨𝑁, 𝑦⟩)‘2o) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘1o) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁)))))
10673, 102, 105sylc 65 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘(1o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))))
10719fveq2d 6826 . . 3 ((𝑁 ∈ ω ∧ 2o𝑁) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
108107adantr 480 . 2 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘(2o +o (𝑜 ∈ On (2o +o 𝑜) = 𝑁))) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
10972, 106, 1083eqtr2rd 2773 1 (((𝑁 ∈ ω ∧ 2o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec(𝐹, ⟨ 𝑁, (1st𝑦)⟩)‘ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  ∃!wreu 3344  Vcvv 3436  [wsbc 3736  csb 3845  wss 3897  c0 4280  ifcif 4472  cop 4579   cuni 4856   × cxp 5612  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308  cfv 6481  crio 7302  (class class class)co 7346  cmpo 7348  ωcom 7796  1st c1st 7919  reccrdg 8328  1oc1o 8378  2oc2o 8379   +o coa 8382  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-en 8870  df-fin 8873
This theorem is referenced by:  finxpsuclem  37441
  Copyright terms: Public domain W3C validator