| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eubrdm | Structured version Visualization version GIF version | ||
| Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.) |
| Ref | Expression |
|---|---|
| eubrdm | ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubrv 47006 | . 2 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) | |
| 2 | iotaex 6492 | . . 3 ⊢ (℩𝑏𝐴𝑅𝑏) ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (∃!𝑏 𝐴𝑅𝑏 → (℩𝑏𝐴𝑅𝑏) ∈ V) |
| 4 | iota4 6500 | . . 3 ⊢ (∃!𝑏 𝐴𝑅𝑏 → [(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏) | |
| 5 | sbcbr12g 5171 | . . . . 5 ⊢ ((℩𝑏𝐴𝑅𝑏) ∈ V → ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏 ↔ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴𝑅⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏)) | |
| 6 | 2, 5 | ax-mp 5 | . . . 4 ⊢ ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏 ↔ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴𝑅⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏) |
| 7 | csbconstg 3889 | . . . . . 6 ⊢ ((℩𝑏𝐴𝑅𝑏) ∈ V → ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴 = 𝐴) | |
| 8 | 2, 7 | ax-mp 5 | . . . . 5 ⊢ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴 = 𝐴 |
| 9 | 2 | csbvargi 4406 | . . . . 5 ⊢ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏 = (℩𝑏𝐴𝑅𝑏) |
| 10 | 8, 9 | breq12i 5124 | . . . 4 ⊢ (⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴𝑅⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏 ↔ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) |
| 11 | 6, 10 | sylbb 219 | . . 3 ⊢ ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏 → 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) |
| 12 | 4, 11 | syl 17 | . 2 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) |
| 13 | breldmg 5881 | . 2 ⊢ ((𝐴 ∈ V ∧ (℩𝑏𝐴𝑅𝑏) ∈ V ∧ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) → 𝐴 ∈ dom 𝑅) | |
| 14 | 1, 3, 12, 13 | syl3anc 1373 | 1 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 Vcvv 3455 [wsbc 3761 ⦋csb 3870 class class class wbr 5115 dom cdm 5646 ℩cio 6470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-dm 5656 df-iota 6472 |
| This theorem is referenced by: dfafv2 47103 |
| Copyright terms: Public domain | W3C validator |