Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eubrdm Structured version   Visualization version   GIF version

Theorem eubrdm 43628
Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
eubrdm (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Distinct variable groups:   𝐴,𝑏   𝑅,𝑏

Proof of Theorem eubrdm
StepHypRef Expression
1 eubrv 43627 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ V)
2 iotaex 6304 . . 3 (℩𝑏𝐴𝑅𝑏) ∈ V
32a1i 11 . 2 (∃!𝑏 𝐴𝑅𝑏 → (℩𝑏𝐴𝑅𝑏) ∈ V)
4 iota4 6305 . . 3 (∃!𝑏 𝐴𝑅𝑏[(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏)
5 sbcbr12g 5086 . . . . 5 ((℩𝑏𝐴𝑅𝑏) ∈ V → ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏))
62, 5ax-mp 5 . . . 4 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏)
7 csbconstg 3847 . . . . . 6 ((℩𝑏𝐴𝑅𝑏) ∈ V → (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴)
82, 7ax-mp 5 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴
92csbvargi 4340 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝑏 = (℩𝑏𝐴𝑅𝑏)
108, 9breq12i 5039 . . . 4 ((℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
116, 10sylbb 222 . . 3 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
124, 11syl 17 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
13 breldmg 5742 . 2 ((𝐴 ∈ V ∧ (℩𝑏𝐴𝑅𝑏) ∈ V ∧ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) → 𝐴 ∈ dom 𝑅)
141, 3, 12, 13syl3anc 1368 1 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  ∃!weu 2628  Vcvv 3441  [wsbc 3720  csb 3828   class class class wbr 5030  dom cdm 5519  cio 6281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174  ax-pow 5231
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-dm 5529  df-iota 6283
This theorem is referenced by:  dfafv2  43688
  Copyright terms: Public domain W3C validator