Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eubrdm | Structured version Visualization version GIF version |
Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.) |
Ref | Expression |
---|---|
eubrdm | ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ dom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubrv 44529 | . 2 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ V) | |
2 | iotaex 6413 | . . 3 ⊢ (℩𝑏𝐴𝑅𝑏) ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (∃!𝑏 𝐴𝑅𝑏 → (℩𝑏𝐴𝑅𝑏) ∈ V) |
4 | iota4 6414 | . . 3 ⊢ (∃!𝑏 𝐴𝑅𝑏 → [(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏) | |
5 | sbcbr12g 5130 | . . . . 5 ⊢ ((℩𝑏𝐴𝑅𝑏) ∈ V → ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏 ↔ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴𝑅⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏)) | |
6 | 2, 5 | ax-mp 5 | . . . 4 ⊢ ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏 ↔ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴𝑅⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏) |
7 | csbconstg 3851 | . . . . . 6 ⊢ ((℩𝑏𝐴𝑅𝑏) ∈ V → ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴 = 𝐴) | |
8 | 2, 7 | ax-mp 5 | . . . . 5 ⊢ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴 = 𝐴 |
9 | 2 | csbvargi 4366 | . . . . 5 ⊢ ⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏 = (℩𝑏𝐴𝑅𝑏) |
10 | 8, 9 | breq12i 5083 | . . . 4 ⊢ (⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝐴𝑅⦋(℩𝑏𝐴𝑅𝑏) / 𝑏⦌𝑏 ↔ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) |
11 | 6, 10 | sylbb 218 | . . 3 ⊢ ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏 → 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) |
12 | 4, 11 | syl 17 | . 2 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) |
13 | breldmg 5818 | . 2 ⊢ ((𝐴 ∈ V ∧ (℩𝑏𝐴𝑅𝑏) ∈ V ∧ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) → 𝐴 ∈ dom 𝑅) | |
14 | 1, 3, 12, 13 | syl3anc 1370 | 1 ⊢ (∃!𝑏 𝐴𝑅𝑏 → 𝐴 ∈ dom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 Vcvv 3432 [wsbc 3716 ⦋csb 3832 class class class wbr 5074 dom cdm 5589 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 |
This theorem is referenced by: dfafv2 44624 |
Copyright terms: Public domain | W3C validator |