Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eubrdm Structured version   Visualization version   GIF version

Theorem eubrdm 44530
Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
eubrdm (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Distinct variable groups:   𝐴,𝑏   𝑅,𝑏

Proof of Theorem eubrdm
StepHypRef Expression
1 eubrv 44529 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ V)
2 iotaex 6413 . . 3 (℩𝑏𝐴𝑅𝑏) ∈ V
32a1i 11 . 2 (∃!𝑏 𝐴𝑅𝑏 → (℩𝑏𝐴𝑅𝑏) ∈ V)
4 iota4 6414 . . 3 (∃!𝑏 𝐴𝑅𝑏[(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏)
5 sbcbr12g 5130 . . . . 5 ((℩𝑏𝐴𝑅𝑏) ∈ V → ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏))
62, 5ax-mp 5 . . . 4 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏)
7 csbconstg 3851 . . . . . 6 ((℩𝑏𝐴𝑅𝑏) ∈ V → (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴)
82, 7ax-mp 5 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴
92csbvargi 4366 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝑏 = (℩𝑏𝐴𝑅𝑏)
108, 9breq12i 5083 . . . 4 ((℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
116, 10sylbb 218 . . 3 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
124, 11syl 17 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
13 breldmg 5818 . 2 ((𝐴 ∈ V ∧ (℩𝑏𝐴𝑅𝑏) ∈ V ∧ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) → 𝐴 ∈ dom 𝑅)
141, 3, 12, 13syl3anc 1370 1 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  ∃!weu 2568  Vcvv 3432  [wsbc 3716  csb 3832   class class class wbr 5074  dom cdm 5589  cio 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391
This theorem is referenced by:  dfafv2  44624
  Copyright terms: Public domain W3C validator