Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eubrdm Structured version   Visualization version   GIF version

Theorem eubrdm 43261
Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
eubrdm (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Distinct variable groups:   𝐴,𝑏   𝑅,𝑏

Proof of Theorem eubrdm
StepHypRef Expression
1 eubrv 43260 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ V)
2 iotaex 6328 . . 3 (℩𝑏𝐴𝑅𝑏) ∈ V
32a1i 11 . 2 (∃!𝑏 𝐴𝑅𝑏 → (℩𝑏𝐴𝑅𝑏) ∈ V)
4 iota4 6329 . . 3 (∃!𝑏 𝐴𝑅𝑏[(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏)
5 sbcbr12g 5113 . . . . 5 ((℩𝑏𝐴𝑅𝑏) ∈ V → ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏))
62, 5ax-mp 5 . . . 4 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏)
7 csbconstg 3900 . . . . . 6 ((℩𝑏𝐴𝑅𝑏) ∈ V → (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴)
82, 7ax-mp 5 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴
92csbvargi 4382 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝑏 = (℩𝑏𝐴𝑅𝑏)
108, 9breq12i 5066 . . . 4 ((℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
116, 10sylbb 221 . . 3 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
124, 11syl 17 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
13 breldmg 5771 . 2 ((𝐴 ∈ V ∧ (℩𝑏𝐴𝑅𝑏) ∈ V ∧ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) → 𝐴 ∈ dom 𝑅)
141, 3, 12, 13syl3anc 1366 1 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1531  wcel 2108  ∃!weu 2647  Vcvv 3493  [wsbc 3770  csb 3881   class class class wbr 5057  dom cdm 5548  cio 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-nul 5201  ax-pow 5257
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-dm 5558  df-iota 6307
This theorem is referenced by:  dfafv2  43321
  Copyright terms: Public domain W3C validator