| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | f1od2.2 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) | 
| 2 | 1 | ralrimivva 3201 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑊) | 
| 3 |  | f1od2.1 | . . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | 
| 4 | 3 | fnmpo 8095 | . . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑊 → 𝐹 Fn (𝐴 × 𝐵)) | 
| 5 | 2, 4 | syl 17 | . 2
⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) | 
| 6 |  | f1od2.3 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) | 
| 7 |  | opelxpi 5721 | . . . . . 6
⊢ ((𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 8 | 6, 7 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 9 | 8 | ralrimiva 3145 | . . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 10 |  | eqid 2736 | . . . . 5
⊢ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) = (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) | 
| 11 | 10 | fnmpt 6707 | . . . 4
⊢
(∀𝑧 ∈
𝐷 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌) → (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷) | 
| 12 | 9, 11 | syl 17 | . . 3
⊢ (𝜑 → (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷) | 
| 13 |  | elxp7 8050 | . . . . . . . 8
⊢ (𝑎 ∈ (𝐴 × 𝐵) ↔ (𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵))) | 
| 14 | 13 | anbi1i 624 | . . . . . . 7
⊢ ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 15 |  | anass 468 | . . . . . . . . 9
⊢ (((𝑎 ∈ (V × V) ∧
((1st ‘𝑎)
∈ 𝐴 ∧
(2nd ‘𝑎)
∈ 𝐵)) ∧ 𝑧 =
⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑎 ∈ (V × V) ∧ (((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶))) | 
| 16 |  | f1od2.4 | . . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) | 
| 17 | 16 | sbcbidv 3844 | . . . . . . . . . . . 12
⊢ (𝜑 → ([(2nd
‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(2nd
‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) | 
| 18 | 17 | sbcbidv 3844 | . . . . . . . . . . 11
⊢ (𝜑 → ([(1st
‘𝑎) / 𝑥][(2nd
‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(1st
‘𝑎) / 𝑥][(2nd
‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) | 
| 19 |  | sbcan 3837 | . . . . . . . . . . . . . 14
⊢
([(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ([(2nd
‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ [(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶)) | 
| 20 |  | sbcan 3837 | . . . . . . . . . . . . . . . 16
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ ([(2nd
‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵)) | 
| 21 |  | fvex 6918 | . . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘𝑎) ∈ V | 
| 22 |  | sbcg 3862 | . . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | 
| 23 | 21, 22 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | 
| 24 |  | sbcel1v 3855 | . . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵 ↔ (2nd ‘𝑎) ∈ 𝐵) | 
| 25 | 23, 24 | anbi12i 628 | . . . . . . . . . . . . . . . 16
⊢
(([(2nd ‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 26 | 20, 25 | bitri 275 | . . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 27 |  | sbceq2g 4418 | . . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑧 = 𝐶 ↔ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 28 | 21, 27 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶 ↔ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) | 
| 29 | 26, 28 | anbi12i 628 | . . . . . . . . . . . . . 14
⊢
(([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ [(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 30 | 19, 29 | bitri 275 | . . . . . . . . . . . . 13
⊢
([(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 31 | 30 | sbcbii 3845 | . . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(1st
‘𝑎) / 𝑥]((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 32 |  | sbcan 3837 | . . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥]((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ([(1st
‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ [(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 33 |  | sbcan 3837 | . . . . . . . . . . . . . 14
⊢
([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ↔ ([(1st
‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵)) | 
| 34 |  | sbcel1v 3855 | . . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ↔ (1st ‘𝑎) ∈ 𝐴) | 
| 35 |  | fvex 6918 | . . . . . . . . . . . . . . . 16
⊢
(1st ‘𝑎) ∈ V | 
| 36 |  | sbcg 3862 | . . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥](2nd
‘𝑎) ∈ 𝐵 ↔ (2nd
‘𝑎) ∈ 𝐵)) | 
| 37 | 35, 36 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵 ↔ (2nd ‘𝑎) ∈ 𝐵) | 
| 38 | 34, 37 | anbi12i 628 | . . . . . . . . . . . . . 14
⊢
(([(1st ‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵) ↔ ((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 39 | 33, 38 | bitri 275 | . . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ↔ ((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 40 |  | sbceq2g 4418 | . . . . . . . . . . . . . 14
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 41 | 35, 40 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) | 
| 42 | 39, 41 | anbi12i 628 | . . . . . . . . . . . 12
⊢
(([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ [(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 43 | 31, 32, 42 | 3bitri 297 | . . . . . . . . . . 11
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 44 |  | sbcan 3837 | . . . . . . . . . . . . . 14
⊢
([(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ ([(2nd
‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ∧ [(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽))) | 
| 45 |  | sbcg 3862 | . . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷)) | 
| 46 | 21, 45 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷) | 
| 47 |  | sbcan 3837 | . . . . . . . . . . . . . . . 16
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽) ↔ ([(2nd
‘𝑎) / 𝑦]𝑥 = 𝐼 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽)) | 
| 48 |  | sbcg 3862 | . . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑥 = 𝐼 ↔ 𝑥 = 𝐼)) | 
| 49 | 21, 48 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑥 = 𝐼 ↔ 𝑥 = 𝐼) | 
| 50 |  | sbceq1g 4416 | . . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ ⦋(2nd
‘𝑎) / 𝑦⦌𝑦 = 𝐽)) | 
| 51 | 21, 50 | ax-mp 5 | . . . . . . . . . . . . . . . . . 18
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ ⦋(2nd
‘𝑎) / 𝑦⦌𝑦 = 𝐽) | 
| 52 | 21 | csbvargi 4434 | . . . . . . . . . . . . . . . . . . 19
⊢
⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = (2nd ‘𝑎) | 
| 53 | 52 | eqeq1i 2741 | . . . . . . . . . . . . . . . . . 18
⊢
(⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) | 
| 54 | 51, 53 | bitri 275 | . . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) | 
| 55 | 49, 54 | anbi12i 628 | . . . . . . . . . . . . . . . 16
⊢
(([(2nd ‘𝑎) / 𝑦]𝑥 = 𝐼 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽) ↔ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 56 | 47, 55 | bitri 275 | . . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽) ↔ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 57 | 46, 56 | anbi12i 628 | . . . . . . . . . . . . . 14
⊢
(([(2nd ‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ∧ [(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 58 | 44, 57 | bitri 275 | . . . . . . . . . . . . 13
⊢
([(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 59 | 58 | sbcbii 3845 | . . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ [(1st
‘𝑎) / 𝑥](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 60 |  | sbcan 3837 | . . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) ↔ ([(1st
‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ∧ [(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 61 |  | sbcg 3862 | . . . . . . . . . . . . . 14
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷)) | 
| 62 | 35, 61 | ax-mp 5 | . . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷) | 
| 63 |  | sbcan 3837 | . . . . . . . . . . . . . 14
⊢
([(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽) ↔ ([(1st
‘𝑎) / 𝑥]𝑥 = 𝐼 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽)) | 
| 64 |  | sbceq1g 4416 | . . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ ⦋(1st
‘𝑎) / 𝑥⦌𝑥 = 𝐼)) | 
| 65 | 35, 64 | ax-mp 5 | . . . . . . . . . . . . . . . 16
⊢
([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ ⦋(1st
‘𝑎) / 𝑥⦌𝑥 = 𝐼) | 
| 66 | 35 | csbvargi 4434 | . . . . . . . . . . . . . . . . 17
⊢
⦋(1st ‘𝑎) / 𝑥⦌𝑥 = (1st ‘𝑎) | 
| 67 | 66 | eqeq1i 2741 | . . . . . . . . . . . . . . . 16
⊢
(⦋(1st ‘𝑎) / 𝑥⦌𝑥 = 𝐼 ↔ (1st ‘𝑎) = 𝐼) | 
| 68 | 65, 67 | bitri 275 | . . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ (1st ‘𝑎) = 𝐼) | 
| 69 |  | sbcg 3862 | . . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥](2nd
‘𝑎) = 𝐽 ↔ (2nd
‘𝑎) = 𝐽)) | 
| 70 | 35, 69 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) | 
| 71 | 68, 70 | anbi12i 628 | . . . . . . . . . . . . . 14
⊢
(([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽) ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 72 | 63, 71 | bitri 275 | . . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽) ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 73 | 62, 72 | anbi12i 628 | . . . . . . . . . . . 12
⊢
(([(1st ‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ∧ [(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 74 | 59, 60, 73 | 3bitri 297 | . . . . . . . . . . 11
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 75 | 18, 43, 74 | 3bitr3g 313 | . . . . . . . . . 10
⊢ (𝜑 → ((((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) | 
| 76 | 75 | anbi2d 630 | . . . . . . . . 9
⊢ (𝜑 → ((𝑎 ∈ (V × V) ∧ (((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))))) | 
| 77 | 15, 76 | bitrid 283 | . . . . . . . 8
⊢ (𝜑 → (((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))))) | 
| 78 |  | xpss 5700 | . . . . . . . . . . . 12
⊢ (𝑋 × 𝑌) ⊆ (V × V) | 
| 79 |  | simprr 772 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 = 〈𝐼, 𝐽〉) | 
| 80 | 8 | adantrr 717 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 81 | 79, 80 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 ∈ (𝑋 × 𝑌)) | 
| 82 | 78, 81 | sselid 3980 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 ∈ (V × V)) | 
| 83 | 82 | ex 412 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) → 𝑎 ∈ (V × V))) | 
| 84 | 83 | pm4.71rd 562 | . . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)))) | 
| 85 |  | eqop 8057 | . . . . . . . . . . 11
⊢ (𝑎 ∈ (V × V) →
(𝑎 = 〈𝐼, 𝐽〉 ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 86 | 85 | anbi2d 630 | . . . . . . . . . 10
⊢ (𝑎 ∈ (V × V) →
((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) | 
| 87 | 86 | pm5.32i 574 | . . . . . . . . 9
⊢ ((𝑎 ∈ (V × V) ∧
(𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) | 
| 88 | 84, 87 | bitr2di 288 | . . . . . . . 8
⊢ (𝜑 → ((𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) | 
| 89 | 77, 88 | bitrd 279 | . . . . . . 7
⊢ (𝜑 → (((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) | 
| 90 | 14, 89 | bitrid 283 | . . . . . 6
⊢ (𝜑 → ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) | 
| 91 | 90 | opabbidv 5208 | . . . . 5
⊢ (𝜑 → {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} = {〈𝑧, 𝑎〉 ∣ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)}) | 
| 92 |  | df-mpo 7437 | . . . . . . . 8
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | 
| 93 | 3, 92 | eqtri 2764 | . . . . . . 7
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | 
| 94 | 93 | cnveqi 5884 | . . . . . 6
⊢ ◡𝐹 = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | 
| 95 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑖((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) | 
| 96 |  | nfv 1913 | . . . . . . . 8
⊢
Ⅎ𝑗((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) | 
| 97 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑥(𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) | 
| 98 |  | nfcsb1v 3922 | . . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 | 
| 99 | 98 | nfeq2 2922 | . . . . . . . . 9
⊢
Ⅎ𝑥 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 | 
| 100 | 97, 99 | nfan 1898 | . . . . . . . 8
⊢
Ⅎ𝑥((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶) | 
| 101 |  | nfv 1913 | . . . . . . . . 9
⊢
Ⅎ𝑦(𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) | 
| 102 |  | nfcv 2904 | . . . . . . . . . . 11
⊢
Ⅎ𝑦𝑖 | 
| 103 |  | nfcsb1v 3922 | . . . . . . . . . . 11
⊢
Ⅎ𝑦⦋𝑗 / 𝑦⦌𝐶 | 
| 104 | 102, 103 | nfcsbw 3924 | . . . . . . . . . 10
⊢
Ⅎ𝑦⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 | 
| 105 | 104 | nfeq2 2922 | . . . . . . . . 9
⊢
Ⅎ𝑦 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 | 
| 106 | 101, 105 | nfan 1898 | . . . . . . . 8
⊢
Ⅎ𝑦((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶) | 
| 107 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → 𝑥 = 𝑖) | 
| 108 | 107 | eleq1d 2825 | . . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑥 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) | 
| 109 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → 𝑦 = 𝑗) | 
| 110 | 109 | eleq1d 2825 | . . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑦 ∈ 𝐵 ↔ 𝑗 ∈ 𝐵)) | 
| 111 | 108, 110 | anbi12d 632 | . . . . . . . . 9
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵))) | 
| 112 |  | csbeq1a 3912 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑗 → 𝐶 = ⦋𝑗 / 𝑦⦌𝐶) | 
| 113 |  | csbeq1a 3912 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑖 → ⦋𝑗 / 𝑦⦌𝐶 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶) | 
| 114 | 112, 113 | sylan9eqr 2798 | . . . . . . . . . 10
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → 𝐶 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶) | 
| 115 | 114 | eqeq2d 2747 | . . . . . . . . 9
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (𝑧 = 𝐶 ↔ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶)) | 
| 116 | 111, 115 | anbi12d 632 | . . . . . . . 8
⊢ ((𝑥 = 𝑖 ∧ 𝑦 = 𝑗) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶))) | 
| 117 | 95, 96, 100, 106, 116 | cbvoprab12 7523 | . . . . . . 7
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑖, 𝑗〉, 𝑧〉 ∣ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶)} | 
| 118 | 117 | cnveqi 5884 | . . . . . 6
⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = ◡{〈〈𝑖, 𝑗〉, 𝑧〉 ∣ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶)} | 
| 119 |  | eleq1 2828 | . . . . . . . . 9
⊢ (𝑎 = 〈𝑖, 𝑗〉 → (𝑎 ∈ (𝐴 × 𝐵) ↔ 〈𝑖, 𝑗〉 ∈ (𝐴 × 𝐵))) | 
| 120 |  | opelxp 5720 | . . . . . . . . 9
⊢
(〈𝑖, 𝑗〉 ∈ (𝐴 × 𝐵) ↔ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵)) | 
| 121 | 119, 120 | bitrdi 287 | . . . . . . . 8
⊢ (𝑎 = 〈𝑖, 𝑗〉 → (𝑎 ∈ (𝐴 × 𝐵) ↔ (𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵))) | 
| 122 |  | csbcom 4419 | . . . . . . . . . . . . 13
⊢
⦋(2nd ‘𝑎) / 𝑗⦌⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 = ⦋𝑖 / 𝑥⦌⦋(2nd
‘𝑎) / 𝑗⦌⦋𝑗 / 𝑦⦌𝐶 | 
| 123 |  | csbcow 3913 | . . . . . . . . . . . . . 14
⊢
⦋(2nd ‘𝑎) / 𝑗⦌⦋𝑗 / 𝑦⦌𝐶 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 124 | 123 | csbeq2i 3906 | . . . . . . . . . . . . 13
⊢
⦋𝑖 /
𝑥⦌⦋(2nd
‘𝑎) / 𝑗⦌⦋𝑗 / 𝑦⦌𝐶 = ⦋𝑖 / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 125 | 122, 124 | eqtri 2764 | . . . . . . . . . . . 12
⊢
⦋(2nd ‘𝑎) / 𝑗⦌⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 = ⦋𝑖 / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 126 | 125 | csbeq2i 3906 | . . . . . . . . . . 11
⊢
⦋(1st ‘𝑎) / 𝑖⦌⦋(2nd
‘𝑎) / 𝑗⦌⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 = ⦋(1st
‘𝑎) / 𝑖⦌⦋𝑖 / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 127 |  | csbcow 3913 | . . . . . . . . . . 11
⊢
⦋(1st ‘𝑎) / 𝑖⦌⦋𝑖 / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 128 | 126, 127 | eqtri 2764 | . . . . . . . . . 10
⊢
⦋(1st ‘𝑎) / 𝑖⦌⦋(2nd
‘𝑎) / 𝑗⦌⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 129 |  | csbopeq1a 8076 | . . . . . . . . . 10
⊢ (𝑎 = 〈𝑖, 𝑗〉 → ⦋(1st
‘𝑎) / 𝑖⦌⦋(2nd
‘𝑎) / 𝑗⦌⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶) | 
| 130 | 128, 129 | eqtr3id 2790 | . . . . . . . . 9
⊢ (𝑎 = 〈𝑖, 𝑗〉 → ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶) | 
| 131 | 130 | eqeq2d 2747 | . . . . . . . 8
⊢ (𝑎 = 〈𝑖, 𝑗〉 → (𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶)) | 
| 132 | 121, 131 | anbi12d 632 | . . . . . . 7
⊢ (𝑎 = 〈𝑖, 𝑗〉 → ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶))) | 
| 133 |  | xpss 5700 | . . . . . . . . 9
⊢ (𝐴 × 𝐵) ⊆ (V × V) | 
| 134 | 133 | sseli 3978 | . . . . . . . 8
⊢ (𝑎 ∈ (𝐴 × 𝐵) → 𝑎 ∈ (V × V)) | 
| 135 | 134 | adantr 480 | . . . . . . 7
⊢ ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) → 𝑎 ∈ (V × V)) | 
| 136 | 132, 135 | cnvoprab 8086 | . . . . . 6
⊢ ◡{〈〈𝑖, 𝑗〉, 𝑧〉 ∣ ((𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵) ∧ 𝑧 = ⦋𝑖 / 𝑥⦌⦋𝑗 / 𝑦⦌𝐶)} = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} | 
| 137 | 94, 118, 136 | 3eqtri 2768 | . . . . 5
⊢ ◡𝐹 = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} | 
| 138 |  | df-mpt 5225 | . . . . 5
⊢ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) = {〈𝑧, 𝑎〉 ∣ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)} | 
| 139 | 91, 137, 138 | 3eqtr4g 2801 | . . . 4
⊢ (𝜑 → ◡𝐹 = (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉)) | 
| 140 | 139 | fneq1d 6660 | . . 3
⊢ (𝜑 → (◡𝐹 Fn 𝐷 ↔ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷)) | 
| 141 | 12, 140 | mpbird 257 | . 2
⊢ (𝜑 → ◡𝐹 Fn 𝐷) | 
| 142 |  | dff1o4 6855 | . 2
⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ◡𝐹 Fn 𝐷)) | 
| 143 | 5, 141, 142 | sylanbrc 583 | 1
⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) |