| Step | Hyp | Ref
| Expression |
| 1 | | df-br 5144 |
. . . 4
⊢ (𝑋∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 2 | 1 | a1i 11 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑌 ↔ 〈𝑋, 𝑌〉 ∈ ∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)})) |
| 3 | | trclfv 15039 |
. . . . 5
⊢ (𝑅 ∈ 𝑊 → (t+‘𝑅) = ∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}) |
| 4 | 3 | breqd 5154 |
. . . 4
⊢ (𝑅 ∈ 𝑊 → (𝑋(t+‘𝑅)𝑌 ↔ 𝑋∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑌)) |
| 5 | 4 | 3ad2ant3 1136 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋(t+‘𝑅)𝑌 ↔ 𝑋∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑌)) |
| 6 | | elimasng 6107 |
. . . 4
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉) → (𝑌 ∈ (∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} “ {𝑋}) ↔ 〈𝑋, 𝑌〉 ∈ ∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)})) |
| 7 | 6 | 3adant3 1133 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑌 ∈ (∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} “ {𝑋}) ↔ 〈𝑋, 𝑌〉 ∈ ∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)})) |
| 8 | 2, 5, 7 | 3bitr4d 311 |
. 2
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋(t+‘𝑅)𝑌 ↔ 𝑌 ∈ (∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} “ {𝑋}))) |
| 9 | | intimasn 43670 |
. . . . 5
⊢ (𝑋 ∈ 𝑈 → (∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} “ {𝑋}) = ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})}) |
| 10 | 9 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} “ {𝑋}) = ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})}) |
| 11 | | simpl3 1194 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑅 ∈ 𝑊) |
| 12 | | snex 5436 |
. . . . . . . . . . . . . . 15
⊢ {𝑋} ∈ V |
| 13 | | vex 3484 |
. . . . . . . . . . . . . . 15
⊢ 𝑓 ∈ V |
| 14 | 12, 13 | xpex 7773 |
. . . . . . . . . . . . . 14
⊢ ({𝑋} × 𝑓) ∈ V |
| 15 | | unexg 7763 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ 𝑊 ∧ ({𝑋} × 𝑓) ∈ V) → (𝑅 ∪ ({𝑋} × 𝑓)) ∈ V) |
| 16 | 11, 14, 15 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (𝑅 ∪ ({𝑋} × 𝑓)) ∈ V) |
| 17 | | trclfvlb 15047 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∪ ({𝑋} × 𝑓)) ∈ V → (𝑅 ∪ ({𝑋} × 𝑓)) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 18 | 17 | unssad 4193 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∪ ({𝑋} × 𝑓)) ∈ V → 𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 19 | 16, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 20 | | trclfvcotrg 15055 |
. . . . . . . . . . . . 13
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 22 | | simpl1 1192 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑋 ∈ 𝑈) |
| 23 | | snidg 4660 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ {𝑋}) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑋 ∈ {𝑋}) |
| 25 | | inelcm 4465 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ {𝑋} ∧ 𝑋 ∈ {𝑋}) → ({𝑋} ∩ {𝑋}) ≠ ∅) |
| 26 | 24, 24, 25 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ({𝑋} ∩ {𝑋}) ≠ ∅) |
| 27 | | xpima2 6204 |
. . . . . . . . . . . . . . 15
⊢ (({𝑋} ∩ {𝑋}) ≠ ∅ → (({𝑋} × 𝑓) “ {𝑋}) = 𝑓) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (({𝑋} × 𝑓) “ {𝑋}) = 𝑓) |
| 29 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (𝑅 ∪ ({𝑋} × 𝑓)) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 30 | 29 | unssbd 4194 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ({𝑋} × 𝑓) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 31 | | imass1 6119 |
. . . . . . . . . . . . . . 15
⊢ (({𝑋} × 𝑓) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) → (({𝑋} × 𝑓) “ {𝑋}) ⊆ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (({𝑋} × 𝑓) “ {𝑋}) ⊆ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) |
| 33 | 28, 32 | eqsstrrd 4019 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑓 ⊆ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) |
| 34 | | imaundir 6170 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∪ ({𝑋} × 𝑓)) “ ({𝑋} ∪ 𝑓)) = ((𝑅 “ ({𝑋} ∪ 𝑓)) ∪ (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓))) |
| 35 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) |
| 36 | | imassrn 6089 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓)) ⊆ ran ({𝑋} × 𝑓) |
| 37 | | rnxpss 6192 |
. . . . . . . . . . . . . . . . . 18
⊢ ran
({𝑋} × 𝑓) ⊆ 𝑓 |
| 38 | 36, 37 | sstri 3993 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 |
| 39 | 38 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) |
| 40 | 35, 39 | unssd 4192 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ∪ (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓))) ⊆ 𝑓) |
| 41 | 34, 40 | eqsstrid 4022 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((𝑅 ∪ ({𝑋} × 𝑓)) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) |
| 42 | | trclimalb2 43739 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∪ ({𝑋} × 𝑓)) ∈ V ∧ ((𝑅 ∪ ({𝑋} × 𝑓)) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}) ⊆ 𝑓) |
| 43 | 16, 41, 42 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}) ⊆ 𝑓) |
| 44 | 33, 43 | eqssd 4001 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) |
| 45 | | sbcan 3838 |
. . . . . . . . . . . . 13
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})) ↔ ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋}))) |
| 46 | | sbcan 3838 |
. . . . . . . . . . . . . . 15
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅 ⊆ 𝑟 ∧ [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟 ∘ 𝑟) ⊆ 𝑟)) |
| 47 | | fvex 6919 |
. . . . . . . . . . . . . . . . . 18
⊢
(t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∈ V |
| 48 | | sbcssg 4520 |
. . . . . . . . . . . . . . . . . 18
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∈ V →
([(t+‘(𝑅 ∪
({𝑋} × 𝑓))) / 𝑟]𝑅 ⊆ 𝑟 ↔ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑅 ⊆ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟)) |
| 49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅 ⊆ 𝑟 ↔ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑅 ⊆ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟) |
| 50 | | csbconstg 3918 |
. . . . . . . . . . . . . . . . . . 19
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∈ V →
⦋(t+‘(𝑅
∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑅 = 𝑅) |
| 51 | 47, 50 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑅 = 𝑅 |
| 52 | 47 | csbvargi 4435 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 = (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) |
| 53 | 51, 52 | sseq12i 4014 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑅 ⊆ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 ↔ 𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 54 | 49, 53 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅 ⊆ 𝑟 ↔ 𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 55 | | sbcssg 4520 |
. . . . . . . . . . . . . . . . . 18
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∈ V →
([(t+‘(𝑅 ∪
({𝑋} × 𝑓))) / 𝑟](𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 ∘ 𝑟) ⊆ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟)) |
| 56 | 47, 55 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 ∘ 𝑟) ⊆ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟) |
| 57 | | csbcog 6317 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∈ V →
⦋(t+‘(𝑅
∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 ∘ 𝑟) = (⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 ∘ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟)) |
| 58 | 47, 57 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 ∘ 𝑟) = (⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 ∘ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟) |
| 59 | 52, 52 | coeq12i 5874 |
. . . . . . . . . . . . . . . . . . 19
⊢
(⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 ∘ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 60 | 58, 59 | eqtri 2765 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 ∘ 𝑟) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 61 | 60, 52 | sseq12i 4014 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 ∘ 𝑟) ⊆ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 ↔ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 62 | 56, 61 | bitri 275 |
. . . . . . . . . . . . . . . 16
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟 ∘ 𝑟) ⊆ 𝑟 ↔ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) |
| 63 | 54, 62 | anbi12i 628 |
. . . . . . . . . . . . . . 15
⊢
(([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅 ⊆ 𝑟 ∧ [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))) |
| 64 | 46, 63 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))) |
| 65 | | sbceq2g 4419 |
. . . . . . . . . . . . . . . 16
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∈ V →
([(t+‘(𝑅 ∪
({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋}) ↔ 𝑓 = ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 “ {𝑋}))) |
| 66 | 47, 65 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋}) ↔ 𝑓 = ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 “ {𝑋})) |
| 67 | | csbima12 6097 |
. . . . . . . . . . . . . . . . 17
⊢
⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 “ {𝑋}) = (⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 “ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌{𝑋}) |
| 68 | 52 | imaeq1i 6075 |
. . . . . . . . . . . . . . . . 17
⊢
(⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌𝑟 “ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌{𝑋}) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ ⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌{𝑋}) |
| 69 | | csbconstg 3918 |
. . . . . . . . . . . . . . . . . . 19
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) ∈ V →
⦋(t+‘(𝑅
∪ ({𝑋} × 𝑓))) / 𝑟⦌{𝑋} = {𝑋}) |
| 70 | 47, 69 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌{𝑋} = {𝑋} |
| 71 | 70 | imaeq2i 6076 |
. . . . . . . . . . . . . . . . 17
⊢
((t+‘(𝑅 ∪
({𝑋} × 𝑓))) “
⦋(t+‘(𝑅
∪ ({𝑋} × 𝑓))) / 𝑟⦌{𝑋}) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}) |
| 72 | 67, 68, 71 | 3eqtri 2769 |
. . . . . . . . . . . . . . . 16
⊢
⦋(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 “ {𝑋}) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}) |
| 73 | 72 | eqeq2i 2750 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 =
⦋(t+‘(𝑅
∪ ({𝑋} × 𝑓))) / 𝑟⦌(𝑟 “ {𝑋}) ↔ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) |
| 74 | 66, 73 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋}) ↔ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) |
| 75 | 64, 74 | anbi12i 628 |
. . . . . . . . . . . . 13
⊢
(([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋})) ↔ ((𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ∧ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}))) |
| 76 | 45, 75 | sylbbr 236 |
. . . . . . . . . . . 12
⊢ (((𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ∧ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) → [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋}))) |
| 77 | 19, 21, 44, 76 | syl21anc 838 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋}))) |
| 78 | 77 | spesbcd 3883 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ∃𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋}))) |
| 79 | 78 | ex 412 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 → ∃𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})))) |
| 80 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑓 → (𝑔 = (𝑠 “ {𝑋}) ↔ 𝑓 = (𝑠 “ {𝑋}))) |
| 81 | 80 | rexbidv 3179 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → (∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) ↔ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑓 = (𝑠 “ {𝑋}))) |
| 82 | | imaeq1 6073 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑟 → (𝑠 “ {𝑋}) = (𝑟 “ {𝑋})) |
| 83 | 82 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑟 → (𝑓 = (𝑠 “ {𝑋}) ↔ 𝑓 = (𝑟 “ {𝑋}))) |
| 84 | 83 | rexab2 3705 |
. . . . . . . . . . 11
⊢
(∃𝑠 ∈
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑓 = (𝑠 “ {𝑋}) ↔ ∃𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋}))) |
| 85 | 81, 84 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) ↔ ∃𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})))) |
| 86 | 13, 85 | elab 3679 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ↔ ∃𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋}))) |
| 87 | 79, 86 | imbitrrdi 252 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 → 𝑓 ∈ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})})) |
| 88 | | intss1 4963 |
. . . . . . . 8
⊢ (𝑓 ∈ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} → ∩
{𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓) |
| 89 | 87, 88 | syl6 35 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 → ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓)) |
| 90 | 89 | alrimiv 1927 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∀𝑓((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 → ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓)) |
| 91 | | ssintab 4965 |
. . . . . 6
⊢ (∩ {𝑔
∣ ∃𝑠 ∈
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ ∩
{𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 → ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓)) |
| 92 | 90, 91 | sylibr 234 |
. . . . 5
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ ∩
{𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}) |
| 93 | | ssintab 4965 |
. . . . . . 7
⊢ (∩ {𝑓
∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ↔ ∀𝑔(∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) → ∩
{𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ 𝑔)) |
| 94 | 82 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑟 → (𝑔 = (𝑠 “ {𝑋}) ↔ 𝑔 = (𝑟 “ {𝑋}))) |
| 95 | 94 | rexab2 3705 |
. . . . . . . . 9
⊢
(∃𝑠 ∈
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) ↔ ∃𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋}))) |
| 96 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → 𝑔 = (𝑟 “ {𝑋})) |
| 97 | | imass1 6119 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ⊆ 𝑟 → (𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋})) |
| 98 | 97 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋})) |
| 99 | | imass1 6119 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ⊆ 𝑟 → (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ (𝑟 “ {𝑋}))) |
| 100 | | imaco 6271 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∘ 𝑟) “ {𝑋}) = (𝑟 “ (𝑟 “ {𝑋})) |
| 101 | | imass1 6119 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 → ((𝑟 ∘ 𝑟) “ {𝑋}) ⊆ (𝑟 “ {𝑋})) |
| 102 | 100, 101 | eqsstrrid 4023 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∘ 𝑟) ⊆ 𝑟 → (𝑟 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})) |
| 103 | 99, 102 | sylan9ss 3997 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})) |
| 104 | 98, 103 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) → ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))) |
| 105 | 104 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))) |
| 106 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑟 ∈ V |
| 107 | 106 | imaex 7936 |
. . . . . . . . . . . . 13
⊢ (𝑟 “ {𝑋}) ∈ V |
| 108 | | imaundi 6169 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 “ ({𝑋} ∪ 𝑓)) = ((𝑅 “ {𝑋}) ∪ (𝑅 “ 𝑓)) |
| 109 | 108 | sseq1i 4012 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ {𝑋}) ∪ (𝑅 “ 𝑓)) ⊆ 𝑓) |
| 110 | | unss 4190 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 “ {𝑋}) ⊆ 𝑓 ∧ (𝑅 “ 𝑓) ⊆ 𝑓) ↔ ((𝑅 “ {𝑋}) ∪ (𝑅 “ 𝑓)) ⊆ 𝑓) |
| 111 | 109, 110 | bitr4i 278 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ {𝑋}) ⊆ 𝑓 ∧ (𝑅 “ 𝑓) ⊆ 𝑓)) |
| 112 | | imaeq2 6074 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑟 “ {𝑋}) → (𝑅 “ 𝑓) = (𝑅 “ (𝑟 “ {𝑋}))) |
| 113 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑟 “ {𝑋}) → 𝑓 = (𝑟 “ {𝑋})) |
| 114 | 112, 113 | sseq12d 4017 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑟 “ {𝑋}) → ((𝑅 “ 𝑓) ⊆ 𝑓 ↔ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))) |
| 115 | 114 | cleq2lem 43621 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑟 “ {𝑋}) → (((𝑅 “ {𝑋}) ⊆ 𝑓 ∧ (𝑅 “ 𝑓) ⊆ 𝑓) ↔ ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})))) |
| 116 | 111, 115 | bitrid 283 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑟 “ {𝑋}) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})))) |
| 117 | 107, 116 | elab 3679 |
. . . . . . . . . . . 12
⊢ ((𝑟 “ {𝑋}) ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ↔ ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))) |
| 118 | 105, 117 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → (𝑟 “ {𝑋}) ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}) |
| 119 | 96, 118 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ (((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → 𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}) |
| 120 | 119 | exlimiv 1930 |
. . . . . . . . 9
⊢
(∃𝑟((𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → 𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}) |
| 121 | 95, 120 | sylbi 217 |
. . . . . . . 8
⊢
(∃𝑠 ∈
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) → 𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}) |
| 122 | | intss1 4963 |
. . . . . . . 8
⊢ (𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} → ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ 𝑔) |
| 123 | 121, 122 | syl 17 |
. . . . . . 7
⊢
(∃𝑠 ∈
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) → ∩
{𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ 𝑔) |
| 124 | 93, 123 | mpgbir 1799 |
. . . . . 6
⊢ ∩ {𝑓
∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} |
| 125 | 124 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})}) |
| 126 | 92, 125 | eqssd 4001 |
. . . 4
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ∩ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} = ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}) |
| 127 | 10, 126 | eqtrd 2777 |
. . 3
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (∩
{𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} “ {𝑋}) = ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}) |
| 128 | 127 | eleq2d 2827 |
. 2
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑌 ∈ (∩ {𝑟 ∣ (𝑅 ⊆ 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟)} “ {𝑋}) ↔ 𝑌 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})) |
| 129 | 8, 128 | bitrd 279 |
1
⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋(t+‘𝑅)𝑌 ↔ 𝑌 ∈ ∩ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})) |