Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtrclfv2 Structured version   Visualization version   GIF version

Theorem brtrclfv2 43716
Description: Two ways to indicate two elements are related by the transitive closure of a relation. (Contributed by RP, 1-Jul-2020.)
Assertion
Ref Expression
brtrclfv2 ((𝑋𝑈𝑌𝑉𝑅𝑊) → (𝑋(t+‘𝑅)𝑌𝑌 {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}))
Distinct variable groups:   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋   𝑓,𝑌

Proof of Theorem brtrclfv2
Dummy variables 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 5108 . . . 4 (𝑋 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
21a1i 11 . . 3 ((𝑋𝑈𝑌𝑉𝑅𝑊) → (𝑋 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}))
3 trclfv 14966 . . . . 5 (𝑅𝑊 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
43breqd 5118 . . . 4 (𝑅𝑊 → (𝑋(t+‘𝑅)𝑌𝑋 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑌))
543ad2ant3 1135 . . 3 ((𝑋𝑈𝑌𝑉𝑅𝑊) → (𝑋(t+‘𝑅)𝑌𝑋 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑌))
6 elimasng 6060 . . . 4 ((𝑋𝑈𝑌𝑉) → (𝑌 ∈ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}))
763adant3 1132 . . 3 ((𝑋𝑈𝑌𝑉𝑅𝑊) → (𝑌 ∈ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} “ {𝑋}) ↔ ⟨𝑋, 𝑌⟩ ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}))
82, 5, 73bitr4d 311 . 2 ((𝑋𝑈𝑌𝑉𝑅𝑊) → (𝑋(t+‘𝑅)𝑌𝑌 ∈ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} “ {𝑋})))
9 intimasn 43646 . . . . 5 (𝑋𝑈 → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} “ {𝑋}) = {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})})
1093ad2ant1 1133 . . . 4 ((𝑋𝑈𝑌𝑉𝑅𝑊) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} “ {𝑋}) = {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})})
11 simpl3 1194 . . . . . . . . . . . . . 14 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑅𝑊)
12 snex 5391 . . . . . . . . . . . . . . 15 {𝑋} ∈ V
13 vex 3451 . . . . . . . . . . . . . . 15 𝑓 ∈ V
1412, 13xpex 7729 . . . . . . . . . . . . . 14 ({𝑋} × 𝑓) ∈ V
15 unexg 7719 . . . . . . . . . . . . . 14 ((𝑅𝑊 ∧ ({𝑋} × 𝑓) ∈ V) → (𝑅 ∪ ({𝑋} × 𝑓)) ∈ V)
1611, 14, 15sylancl 586 . . . . . . . . . . . . 13 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (𝑅 ∪ ({𝑋} × 𝑓)) ∈ V)
17 trclfvlb 14974 . . . . . . . . . . . . . 14 ((𝑅 ∪ ({𝑋} × 𝑓)) ∈ V → (𝑅 ∪ ({𝑋} × 𝑓)) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
1817unssad 4156 . . . . . . . . . . . . 13 ((𝑅 ∪ ({𝑋} × 𝑓)) ∈ V → 𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
1916, 18syl 17 . . . . . . . . . . . 12 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
20 trclfvcotrg 14982 . . . . . . . . . . . . 13 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))
2120a1i 11 . . . . . . . . . . . 12 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
22 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑋𝑈)
23 snidg 4624 . . . . . . . . . . . . . . . . 17 (𝑋𝑈𝑋 ∈ {𝑋})
2422, 23syl 17 . . . . . . . . . . . . . . . 16 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑋 ∈ {𝑋})
25 inelcm 4428 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ {𝑋} ∧ 𝑋 ∈ {𝑋}) → ({𝑋} ∩ {𝑋}) ≠ ∅)
2624, 24, 25syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ({𝑋} ∩ {𝑋}) ≠ ∅)
27 xpima2 6157 . . . . . . . . . . . . . . 15 (({𝑋} ∩ {𝑋}) ≠ ∅ → (({𝑋} × 𝑓) “ {𝑋}) = 𝑓)
2826, 27syl 17 . . . . . . . . . . . . . 14 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (({𝑋} × 𝑓) “ {𝑋}) = 𝑓)
2916, 17syl 17 . . . . . . . . . . . . . . . 16 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (𝑅 ∪ ({𝑋} × 𝑓)) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
3029unssbd 4157 . . . . . . . . . . . . . . 15 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ({𝑋} × 𝑓) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
31 imass1 6072 . . . . . . . . . . . . . . 15 (({𝑋} × 𝑓) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) → (({𝑋} × 𝑓) “ {𝑋}) ⊆ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}))
3230, 31syl 17 . . . . . . . . . . . . . 14 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (({𝑋} × 𝑓) “ {𝑋}) ⊆ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}))
3328, 32eqsstrrd 3982 . . . . . . . . . . . . 13 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑓 ⊆ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}))
34 imaundir 6123 . . . . . . . . . . . . . . 15 ((𝑅 ∪ ({𝑋} × 𝑓)) “ ({𝑋} ∪ 𝑓)) = ((𝑅 “ ({𝑋} ∪ 𝑓)) ∪ (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓)))
35 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓)
36 imassrn 6042 . . . . . . . . . . . . . . . . . 18 (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓)) ⊆ ran ({𝑋} × 𝑓)
37 rnxpss 6145 . . . . . . . . . . . . . . . . . 18 ran ({𝑋} × 𝑓) ⊆ 𝑓
3836, 37sstri 3956 . . . . . . . . . . . . . . . . 17 (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓
3938a1i 11 . . . . . . . . . . . . . . . 16 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓)
4035, 39unssd 4155 . . . . . . . . . . . . . . 15 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ∪ (({𝑋} × 𝑓) “ ({𝑋} ∪ 𝑓))) ⊆ 𝑓)
4134, 40eqsstrid 3985 . . . . . . . . . . . . . 14 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((𝑅 ∪ ({𝑋} × 𝑓)) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓)
42 trclimalb2 43715 . . . . . . . . . . . . . 14 (((𝑅 ∪ ({𝑋} × 𝑓)) ∈ V ∧ ((𝑅 ∪ ({𝑋} × 𝑓)) “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}) ⊆ 𝑓)
4316, 41, 42syl2anc 584 . . . . . . . . . . . . 13 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}) ⊆ 𝑓)
4433, 43eqssd 3964 . . . . . . . . . . . 12 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}))
45 sbcan 3803 . . . . . . . . . . . . 13 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})) ↔ ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋})))
46 sbcan 3803 . . . . . . . . . . . . . . 15 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅𝑟[(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟𝑟) ⊆ 𝑟))
47 fvex 6871 . . . . . . . . . . . . . . . . . 18 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∈ V
48 sbcssg 4483 . . . . . . . . . . . . . . . . . 18 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∈ V → ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑅(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟))
4947, 48ax-mp 5 . . . . . . . . . . . . . . . . 17 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑅(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟)
50 csbconstg 3881 . . . . . . . . . . . . . . . . . . 19 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∈ V → (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑅 = 𝑅)
5147, 50ax-mp 5 . . . . . . . . . . . . . . . . . 18 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑅 = 𝑅
5247csbvargi 4398 . . . . . . . . . . . . . . . . . 18 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟 = (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))
5351, 52sseq12i 3977 . . . . . . . . . . . . . . . . 17 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑅(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
5449, 53bitri 275 . . . . . . . . . . . . . . . 16 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅𝑟𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
55 sbcssg 4483 . . . . . . . . . . . . . . . . . 18 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∈ V → ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟𝑟) ⊆ 𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟𝑟) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟))
5647, 55ax-mp 5 . . . . . . . . . . . . . . . . 17 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟𝑟) ⊆ 𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟𝑟) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟)
57 csbcog 6270 . . . . . . . . . . . . . . . . . . . 20 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∈ V → (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟𝑟) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟))
5847, 57ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟𝑟) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟)
5952, 52coeq12i 5827 . . . . . . . . . . . . . . . . . . 19 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
6058, 59eqtri 2752 . . . . . . . . . . . . . . . . . 18 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟𝑟) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
6160, 52sseq12i 3977 . . . . . . . . . . . . . . . . 17 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟𝑟) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟 ↔ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
6256, 61bitri 275 . . . . . . . . . . . . . . . 16 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟𝑟) ⊆ 𝑟 ↔ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))))
6354, 62anbi12i 628 . . . . . . . . . . . . . . 15 (([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑅𝑟[(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑟𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))))
6446, 63bitri 275 . . . . . . . . . . . . . 14 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))))
65 sbceq2g 4382 . . . . . . . . . . . . . . . 16 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∈ V → ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋}) ↔ 𝑓 = (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟 “ {𝑋})))
6647, 65ax-mp 5 . . . . . . . . . . . . . . 15 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋}) ↔ 𝑓 = (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟 “ {𝑋}))
67 csbima12 6050 . . . . . . . . . . . . . . . . 17 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟 “ {𝑋}) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟{𝑋})
6852imaeq1i 6028 . . . . . . . . . . . . . . . . 17 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟𝑟(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟{𝑋}) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟{𝑋})
69 csbconstg 3881 . . . . . . . . . . . . . . . . . . 19 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∈ V → (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟{𝑋} = {𝑋})
7047, 69ax-mp 5 . . . . . . . . . . . . . . . . . 18 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟{𝑋} = {𝑋}
7170imaeq2i 6029 . . . . . . . . . . . . . . . . 17 ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟{𝑋}) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})
7267, 68, 713eqtri 2756 . . . . . . . . . . . . . . . 16 (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟 “ {𝑋}) = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})
7372eqeq2i 2742 . . . . . . . . . . . . . . 15 (𝑓 = (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟(𝑟 “ {𝑋}) ↔ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}))
7466, 73bitri 275 . . . . . . . . . . . . . 14 ([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋}) ↔ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋}))
7564, 74anbi12i 628 . . . . . . . . . . . . 13 (([(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟](𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]𝑓 = (𝑟 “ {𝑋})) ↔ ((𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ∧ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})))
7645, 75sylbbr 236 . . . . . . . . . . . 12 (((𝑅 ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∧ ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) ∘ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ⊆ (t+‘(𝑅 ∪ ({𝑋} × 𝑓)))) ∧ 𝑓 = ((t+‘(𝑅 ∪ ({𝑋} × 𝑓))) “ {𝑋})) → [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})))
7719, 21, 44, 76syl21anc 837 . . . . . . . . . . 11 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → [(t+‘(𝑅 ∪ ({𝑋} × 𝑓))) / 𝑟]((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})))
7877spesbcd 3846 . . . . . . . . . 10 (((𝑋𝑈𝑌𝑉𝑅𝑊) ∧ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓) → ∃𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})))
7978ex 412 . . . . . . . . 9 ((𝑋𝑈𝑌𝑉𝑅𝑊) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 → ∃𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋}))))
80 eqeq1 2733 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝑔 = (𝑠 “ {𝑋}) ↔ 𝑓 = (𝑠 “ {𝑋})))
8180rexbidv 3157 . . . . . . . . . . 11 (𝑔 = 𝑓 → (∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) ↔ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑓 = (𝑠 “ {𝑋})))
82 imaeq1 6026 . . . . . . . . . . . . 13 (𝑠 = 𝑟 → (𝑠 “ {𝑋}) = (𝑟 “ {𝑋}))
8382eqeq2d 2740 . . . . . . . . . . . 12 (𝑠 = 𝑟 → (𝑓 = (𝑠 “ {𝑋}) ↔ 𝑓 = (𝑟 “ {𝑋})))
8483rexab2 3670 . . . . . . . . . . 11 (∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑓 = (𝑠 “ {𝑋}) ↔ ∃𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})))
8581, 84bitrdi 287 . . . . . . . . . 10 (𝑔 = 𝑓 → (∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) ↔ ∃𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋}))))
8613, 85elab 3646 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ↔ ∃𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑓 = (𝑟 “ {𝑋})))
8779, 86imbitrrdi 252 . . . . . . . 8 ((𝑋𝑈𝑌𝑉𝑅𝑊) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓𝑓 ∈ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})}))
88 intss1 4927 . . . . . . . 8 (𝑓 ∈ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} → {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓)
8987, 88syl6 35 . . . . . . 7 ((𝑋𝑈𝑌𝑉𝑅𝑊) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓))
9089alrimiv 1927 . . . . . 6 ((𝑋𝑈𝑌𝑉𝑅𝑊) → ∀𝑓((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓))
91 ssintab 4929 . . . . . 6 ( {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ↔ ∀𝑓((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ 𝑓))
9290, 91sylibr 234 . . . . 5 ((𝑋𝑈𝑌𝑉𝑅𝑊) → {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ⊆ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})
93 ssintab 4929 . . . . . . 7 ( {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} ↔ ∀𝑔(∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) → {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ 𝑔))
9482eqeq2d 2740 . . . . . . . . . 10 (𝑠 = 𝑟 → (𝑔 = (𝑠 “ {𝑋}) ↔ 𝑔 = (𝑟 “ {𝑋})))
9594rexab2 3670 . . . . . . . . 9 (∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) ↔ ∃𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})))
96 simpr 484 . . . . . . . . . . 11 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → 𝑔 = (𝑟 “ {𝑋}))
97 imass1 6072 . . . . . . . . . . . . . . 15 (𝑅𝑟 → (𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}))
9897adantr 480 . . . . . . . . . . . . . 14 ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}))
99 imass1 6072 . . . . . . . . . . . . . . 15 (𝑅𝑟 → (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ (𝑟 “ {𝑋})))
100 imaco 6224 . . . . . . . . . . . . . . . 16 ((𝑟𝑟) “ {𝑋}) = (𝑟 “ (𝑟 “ {𝑋}))
101 imass1 6072 . . . . . . . . . . . . . . . 16 ((𝑟𝑟) ⊆ 𝑟 → ((𝑟𝑟) “ {𝑋}) ⊆ (𝑟 “ {𝑋}))
102100, 101eqsstrrid 3986 . . . . . . . . . . . . . . 15 ((𝑟𝑟) ⊆ 𝑟 → (𝑟 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))
10399, 102sylan9ss 3960 . . . . . . . . . . . . . 14 ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))
10498, 103jca 511 . . . . . . . . . . . . 13 ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) → ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})))
105104adantr 480 . . . . . . . . . . . 12 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})))
106 vex 3451 . . . . . . . . . . . . . 14 𝑟 ∈ V
107106imaex 7890 . . . . . . . . . . . . 13 (𝑟 “ {𝑋}) ∈ V
108 imaundi 6122 . . . . . . . . . . . . . . . 16 (𝑅 “ ({𝑋} ∪ 𝑓)) = ((𝑅 “ {𝑋}) ∪ (𝑅𝑓))
109108sseq1i 3975 . . . . . . . . . . . . . . 15 ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ {𝑋}) ∪ (𝑅𝑓)) ⊆ 𝑓)
110 unss 4153 . . . . . . . . . . . . . . 15 (((𝑅 “ {𝑋}) ⊆ 𝑓 ∧ (𝑅𝑓) ⊆ 𝑓) ↔ ((𝑅 “ {𝑋}) ∪ (𝑅𝑓)) ⊆ 𝑓)
111109, 110bitr4i 278 . . . . . . . . . . . . . 14 ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ {𝑋}) ⊆ 𝑓 ∧ (𝑅𝑓) ⊆ 𝑓))
112 imaeq2 6027 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑟 “ {𝑋}) → (𝑅𝑓) = (𝑅 “ (𝑟 “ {𝑋})))
113 id 22 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑟 “ {𝑋}) → 𝑓 = (𝑟 “ {𝑋}))
114112, 113sseq12d 3980 . . . . . . . . . . . . . . 15 (𝑓 = (𝑟 “ {𝑋}) → ((𝑅𝑓) ⊆ 𝑓 ↔ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})))
115114cleq2lem 43597 . . . . . . . . . . . . . 14 (𝑓 = (𝑟 “ {𝑋}) → (((𝑅 “ {𝑋}) ⊆ 𝑓 ∧ (𝑅𝑓) ⊆ 𝑓) ↔ ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))))
116111, 115bitrid 283 . . . . . . . . . . . . 13 (𝑓 = (𝑟 “ {𝑋}) → ((𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓 ↔ ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋}))))
117107, 116elab 3646 . . . . . . . . . . . 12 ((𝑟 “ {𝑋}) ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ↔ ((𝑅 “ {𝑋}) ⊆ (𝑟 “ {𝑋}) ∧ (𝑅 “ (𝑟 “ {𝑋})) ⊆ (𝑟 “ {𝑋})))
118105, 117sylibr 234 . . . . . . . . . . 11 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → (𝑟 “ {𝑋}) ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})
11996, 118eqeltrd 2828 . . . . . . . . . 10 (((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → 𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})
120119exlimiv 1930 . . . . . . . . 9 (∃𝑟((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ∧ 𝑔 = (𝑟 “ {𝑋})) → 𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})
12195, 120sylbi 217 . . . . . . . 8 (∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) → 𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})
122 intss1 4927 . . . . . . . 8 (𝑔 ∈ {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} → {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ 𝑔)
123121, 122syl 17 . . . . . . 7 (∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋}) → {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ 𝑔)
12493, 123mpgbir 1799 . . . . . 6 {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})}
125124a1i 11 . . . . 5 ((𝑋𝑈𝑌𝑉𝑅𝑊) → {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓} ⊆ {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})})
12692, 125eqssd 3964 . . . 4 ((𝑋𝑈𝑌𝑉𝑅𝑊) → {𝑔 ∣ ∃𝑠 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}𝑔 = (𝑠 “ {𝑋})} = {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})
12710, 126eqtrd 2764 . . 3 ((𝑋𝑈𝑌𝑉𝑅𝑊) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} “ {𝑋}) = {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓})
128127eleq2d 2814 . 2 ((𝑋𝑈𝑌𝑉𝑅𝑊) → (𝑌 ∈ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} “ {𝑋}) ↔ 𝑌 {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}))
1298, 128bitrd 279 1 ((𝑋𝑈𝑌𝑉𝑅𝑊) → (𝑋(t+‘𝑅)𝑌𝑌 {𝑓 ∣ (𝑅 “ ({𝑋} ∪ 𝑓)) ⊆ 𝑓}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wrex 3053  Vcvv 3447  [wsbc 3753  csb 3862  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  cop 4595   cint 4910   class class class wbr 5107   × cxp 5636  ran crn 5639  cima 5641  ccom 5642  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-trcl 14953  df-relexp 14986
This theorem is referenced by:  dffrege76  43928
  Copyright terms: Public domain W3C validator