Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgracyclt3v Structured version   Visualization version   GIF version

Theorem cusgracyclt3v 35124
Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.)
Hypothesis
Ref Expression
cusgracyclt3v.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgracyclt3v (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))

Proof of Theorem cusgracyclt3v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacycgr 35113 . . 3 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
2 3nn0 12571 . . . . . . 7 3 ∈ ℕ0
3 cusgracyclt3v.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
43fvexi 6934 . . . . . . . 8 𝑉 ∈ V
5 hashxnn0 14388 . . . . . . . 8 (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*)
64, 5ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℕ0*
7 xnn0lem1lt 13306 . . . . . . 7 ((3 ∈ ℕ0 ∧ (♯‘𝑉) ∈ ℕ0*) → (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉)))
82, 6, 7mp2an 691 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉))
9 3re 12373 . . . . . . . 8 3 ∈ ℝ
109rexri 11348 . . . . . . 7 3 ∈ ℝ*
11 xnn0xr 12630 . . . . . . . 8 ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*)
126, 11ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℝ*
13 xrlenlt 11355 . . . . . . 7 ((3 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3))
1410, 12, 13mp2an 691 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3)
15 3m1e2 12421 . . . . . . 7 (3 − 1) = 2
1615breq1i 5173 . . . . . 6 ((3 − 1) < (♯‘𝑉) ↔ 2 < (♯‘𝑉))
178, 14, 163bitr3i 301 . . . . 5 (¬ (♯‘𝑉) < 3 ↔ 2 < (♯‘𝑉))
183cusgr3cyclex 35104 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
19 3ne0 12399 . . . . . . . . . . 11 3 ≠ 0
20 neeq1 3009 . . . . . . . . . . 11 ((♯‘𝑓) = 3 → ((♯‘𝑓) ≠ 0 ↔ 3 ≠ 0))
2119, 20mpbiri 258 . . . . . . . . . 10 ((♯‘𝑓) = 3 → (♯‘𝑓) ≠ 0)
22 hasheq0 14412 . . . . . . . . . . . 12 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2322elv 3493 . . . . . . . . . . 11 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2423necon3bii 2999 . . . . . . . . . 10 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
2521, 24sylib 218 . . . . . . . . 9 ((♯‘𝑓) = 3 → 𝑓 ≠ ∅)
2625anim2i 616 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
27262eximi 1834 . . . . . . 7 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2818, 27syl 17 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2928ex 412 . . . . 5 (𝐺 ∈ ComplUSGraph → (2 < (♯‘𝑉) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3017, 29biimtrid 242 . . . 4 (𝐺 ∈ ComplUSGraph → (¬ (♯‘𝑉) < 3 → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3130con1d 145 . . 3 (𝐺 ∈ ComplUSGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → (♯‘𝑉) < 3))
321, 31sylbid 240 . 2 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph → (♯‘𝑉) < 3))
33 cusgrusgr 29454 . . . . . . 7 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
343usgrcyclgt2v 35099 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉))
35343expib 1122 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3633, 35syl 17 . . . . . 6 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3736, 17imbitrrdi 252 . . . . 5 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3837exlimdvv 1933 . . . 4 (𝐺 ∈ ComplUSGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3938con2d 134 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
4039, 1sylibrd 259 . 2 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → 𝐺 ∈ AcyclicGraph))
4132, 40impbid 212 1 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325  cmin 11520  2c2 12348  3c3 12349  0cn0 12553  0*cxnn0 12625  chash 14379  Vtxcvtx 29031  USGraphcusgr 29184  ComplUSGraphccusgr 29445  Cyclesccycls 29821  AcyclicGraphcacycgr 35110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xneg 13175  df-xadd 13176  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-s4 14899  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-nbgr 29368  df-uvtx 29421  df-cplgr 29446  df-cusgr 29447  df-wlks 29635  df-trls 29728  df-pths 29752  df-crcts 29822  df-cycls 29823  df-acycgr 35111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator