| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cusgracyclt3v | Structured version Visualization version GIF version | ||
| Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.) |
| Ref | Expression |
|---|---|
| cusgracyclt3v.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgracyclt3v | ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacycgr 35167 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
| 2 | 3nn0 12519 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 3 | cusgracyclt3v.1 | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | fvexi 6890 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
| 5 | hashxnn0 14357 | . . . . . . . 8 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝑉) ∈ ℕ0* |
| 7 | xnn0lem1lt 13260 | . . . . . . 7 ⊢ ((3 ∈ ℕ0 ∧ (♯‘𝑉) ∈ ℕ0*) → (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉))) | |
| 8 | 2, 6, 7 | mp2an 692 | . . . . . 6 ⊢ (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉)) |
| 9 | 3re 12320 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 10 | 9 | rexri 11293 | . . . . . . 7 ⊢ 3 ∈ ℝ* |
| 11 | xnn0xr 12579 | . . . . . . . 8 ⊢ ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*) | |
| 12 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝑉) ∈ ℝ* |
| 13 | xrlenlt 11300 | . . . . . . 7 ⊢ ((3 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3)) | |
| 14 | 10, 12, 13 | mp2an 692 | . . . . . 6 ⊢ (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3) |
| 15 | 3m1e2 12368 | . . . . . . 7 ⊢ (3 − 1) = 2 | |
| 16 | 15 | breq1i 5126 | . . . . . 6 ⊢ ((3 − 1) < (♯‘𝑉) ↔ 2 < (♯‘𝑉)) |
| 17 | 8, 14, 16 | 3bitr3i 301 | . . . . 5 ⊢ (¬ (♯‘𝑉) < 3 ↔ 2 < (♯‘𝑉)) |
| 18 | 3 | cusgr3cyclex 35158 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
| 19 | 3ne0 12346 | . . . . . . . . . . 11 ⊢ 3 ≠ 0 | |
| 20 | neeq1 2994 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) = 3 → ((♯‘𝑓) ≠ 0 ↔ 3 ≠ 0)) | |
| 21 | 19, 20 | mpbiri 258 | . . . . . . . . . 10 ⊢ ((♯‘𝑓) = 3 → (♯‘𝑓) ≠ 0) |
| 22 | hasheq0 14381 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
| 23 | 22 | elv 3464 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
| 24 | 23 | necon3bii 2984 | . . . . . . . . . 10 ⊢ ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅) |
| 25 | 21, 24 | sylib 218 | . . . . . . . . 9 ⊢ ((♯‘𝑓) = 3 → 𝑓 ≠ ∅) |
| 26 | 25 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 27 | 26 | 2eximi 1836 | . . . . . . 7 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 28 | 18, 27 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 29 | 28 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → (2 < (♯‘𝑉) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 30 | 17, 29 | biimtrid 242 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → (¬ (♯‘𝑉) < 3 → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 31 | 30 | con1d 145 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → (♯‘𝑉) < 3)) |
| 32 | 1, 31 | sylbid 240 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph → (♯‘𝑉) < 3)) |
| 33 | cusgrusgr 29398 | . . . . . . 7 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 34 | 3 | usgrcyclgt2v 35153 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉)) |
| 35 | 34 | 3expib 1122 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉))) |
| 36 | 33, 35 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉))) |
| 37 | 36, 17 | imbitrrdi 252 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3)) |
| 38 | 37 | exlimdvv 1934 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3)) |
| 39 | 38 | con2d 134 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 40 | 39, 1 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → 𝐺 ∈ AcyclicGraph)) |
| 41 | 32, 40 | impbid 212 | 1 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 − cmin 11466 2c2 12295 3c3 12296 ℕ0cn0 12501 ℕ0*cxnn0 12574 ♯chash 14348 Vtxcvtx 28975 USGraphcusgr 29128 ComplUSGraphccusgr 29389 Cyclesccycls 29767 AcyclicGraphcacycgr 35164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-xneg 13128 df-xadd 13129 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-s2 14867 df-s3 14868 df-s4 14869 df-edg 29027 df-uhgr 29037 df-upgr 29061 df-umgr 29062 df-uspgr 29129 df-usgr 29130 df-nbgr 29312 df-uvtx 29365 df-cplgr 29390 df-cusgr 29391 df-wlks 29579 df-trls 29672 df-pths 29696 df-crcts 29768 df-cycls 29769 df-acycgr 35165 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |