Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgracyclt3v Structured version   Visualization version   GIF version

Theorem cusgracyclt3v 34899
Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.)
Hypothesis
Ref Expression
cusgracyclt3v.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgracyclt3v (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))

Proof of Theorem cusgracyclt3v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacycgr 34888 . . 3 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
2 3nn0 12528 . . . . . . 7 3 ∈ ℕ0
3 cusgracyclt3v.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
43fvexi 6910 . . . . . . . 8 𝑉 ∈ V
5 hashxnn0 14339 . . . . . . . 8 (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*)
64, 5ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℕ0*
7 xnn0lem1lt 13263 . . . . . . 7 ((3 ∈ ℕ0 ∧ (♯‘𝑉) ∈ ℕ0*) → (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉)))
82, 6, 7mp2an 690 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉))
9 3re 12330 . . . . . . . 8 3 ∈ ℝ
109rexri 11309 . . . . . . 7 3 ∈ ℝ*
11 xnn0xr 12587 . . . . . . . 8 ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*)
126, 11ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℝ*
13 xrlenlt 11316 . . . . . . 7 ((3 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3))
1410, 12, 13mp2an 690 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3)
15 3m1e2 12378 . . . . . . 7 (3 − 1) = 2
1615breq1i 5156 . . . . . 6 ((3 − 1) < (♯‘𝑉) ↔ 2 < (♯‘𝑉))
178, 14, 163bitr3i 300 . . . . 5 (¬ (♯‘𝑉) < 3 ↔ 2 < (♯‘𝑉))
183cusgr3cyclex 34879 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
19 3ne0 12356 . . . . . . . . . . 11 3 ≠ 0
20 neeq1 2992 . . . . . . . . . . 11 ((♯‘𝑓) = 3 → ((♯‘𝑓) ≠ 0 ↔ 3 ≠ 0))
2119, 20mpbiri 257 . . . . . . . . . 10 ((♯‘𝑓) = 3 → (♯‘𝑓) ≠ 0)
22 hasheq0 14363 . . . . . . . . . . . 12 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2322elv 3467 . . . . . . . . . . 11 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2423necon3bii 2982 . . . . . . . . . 10 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
2521, 24sylib 217 . . . . . . . . 9 ((♯‘𝑓) = 3 → 𝑓 ≠ ∅)
2625anim2i 615 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
27262eximi 1830 . . . . . . 7 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2818, 27syl 17 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2928ex 411 . . . . 5 (𝐺 ∈ ComplUSGraph → (2 < (♯‘𝑉) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3017, 29biimtrid 241 . . . 4 (𝐺 ∈ ComplUSGraph → (¬ (♯‘𝑉) < 3 → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3130con1d 145 . . 3 (𝐺 ∈ ComplUSGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → (♯‘𝑉) < 3))
321, 31sylbid 239 . 2 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph → (♯‘𝑉) < 3))
33 cusgrusgr 29309 . . . . . . 7 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
343usgrcyclgt2v 34874 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉))
35343expib 1119 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3633, 35syl 17 . . . . . 6 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3736, 17imbitrrdi 251 . . . . 5 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3837exlimdvv 1929 . . . 4 (𝐺 ∈ ComplUSGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3938con2d 134 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
4039, 1sylibrd 258 . 2 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → 𝐺 ∈ AcyclicGraph))
4132, 40impbid 211 1 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2929  Vcvv 3461  c0 4322   class class class wbr 5149  cfv 6549  (class class class)co 7419  0cc0 11145  1c1 11146  *cxr 11284   < clt 11285  cle 11286  cmin 11481  2c2 12305  3c3 12306  0cn0 12510  0*cxnn0 12582  chash 14330  Vtxcvtx 28886  USGraphcusgr 29039  ComplUSGraphccusgr 29300  Cyclesccycls 29676  AcyclicGraphcacycgr 34885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9931  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-xneg 13132  df-xadd 13133  df-fz 13525  df-fzo 13668  df-hash 14331  df-word 14506  df-concat 14562  df-s1 14587  df-s2 14840  df-s3 14841  df-s4 14842  df-edg 28938  df-uhgr 28948  df-upgr 28972  df-umgr 28973  df-uspgr 29040  df-usgr 29041  df-nbgr 29223  df-uvtx 29276  df-cplgr 29301  df-cusgr 29302  df-wlks 29490  df-trls 29583  df-pths 29607  df-crcts 29677  df-cycls 29678  df-acycgr 34886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator