Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cusgracyclt3v | Structured version Visualization version GIF version |
Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.) |
Ref | Expression |
---|---|
cusgracyclt3v.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cusgracyclt3v | ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isacycgr 33007 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
2 | 3nn0 12181 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
3 | cusgracyclt3v.1 | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | fvexi 6770 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
5 | hashxnn0 13981 | . . . . . . . 8 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝑉) ∈ ℕ0* |
7 | xnn0lem1lt 12907 | . . . . . . 7 ⊢ ((3 ∈ ℕ0 ∧ (♯‘𝑉) ∈ ℕ0*) → (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉))) | |
8 | 2, 6, 7 | mp2an 688 | . . . . . 6 ⊢ (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉)) |
9 | 3re 11983 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
10 | 9 | rexri 10964 | . . . . . . 7 ⊢ 3 ∈ ℝ* |
11 | xnn0xr 12240 | . . . . . . . 8 ⊢ ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*) | |
12 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝑉) ∈ ℝ* |
13 | xrlenlt 10971 | . . . . . . 7 ⊢ ((3 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3)) | |
14 | 10, 12, 13 | mp2an 688 | . . . . . 6 ⊢ (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3) |
15 | 3m1e2 12031 | . . . . . . 7 ⊢ (3 − 1) = 2 | |
16 | 15 | breq1i 5077 | . . . . . 6 ⊢ ((3 − 1) < (♯‘𝑉) ↔ 2 < (♯‘𝑉)) |
17 | 8, 14, 16 | 3bitr3i 300 | . . . . 5 ⊢ (¬ (♯‘𝑉) < 3 ↔ 2 < (♯‘𝑉)) |
18 | 3 | cusgr3cyclex 32998 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
19 | 3ne0 12009 | . . . . . . . . . . 11 ⊢ 3 ≠ 0 | |
20 | neeq1 3005 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) = 3 → ((♯‘𝑓) ≠ 0 ↔ 3 ≠ 0)) | |
21 | 19, 20 | mpbiri 257 | . . . . . . . . . 10 ⊢ ((♯‘𝑓) = 3 → (♯‘𝑓) ≠ 0) |
22 | hasheq0 14006 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
23 | 22 | elv 3428 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
24 | 23 | necon3bii 2995 | . . . . . . . . . 10 ⊢ ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅) |
25 | 21, 24 | sylib 217 | . . . . . . . . 9 ⊢ ((♯‘𝑓) = 3 → 𝑓 ≠ ∅) |
26 | 25 | anim2i 616 | . . . . . . . 8 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
27 | 26 | 2eximi 1839 | . . . . . . 7 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
28 | 18, 27 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
29 | 28 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → (2 < (♯‘𝑉) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
30 | 17, 29 | syl5bi 241 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → (¬ (♯‘𝑉) < 3 → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
31 | 30 | con1d 145 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → (♯‘𝑉) < 3)) |
32 | 1, 31 | sylbid 239 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph → (♯‘𝑉) < 3)) |
33 | cusgrusgr 27689 | . . . . . . 7 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
34 | 3 | usgrcyclgt2v 32993 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉)) |
35 | 34 | 3expib 1120 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉))) |
36 | 33, 35 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉))) |
37 | 36, 17 | syl6ibr 251 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3)) |
38 | 37 | exlimdvv 1938 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3)) |
39 | 38 | con2d 134 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
40 | 39, 1 | sylibrd 258 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → 𝐺 ∈ AcyclicGraph)) |
41 | 32, 40 | impbid 211 | 1 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 2c2 11958 3c3 11959 ℕ0cn0 12163 ℕ0*cxnn0 12235 ♯chash 13972 Vtxcvtx 27269 USGraphcusgr 27422 ComplUSGraphccusgr 27680 Cyclesccycls 28054 AcyclicGraphcacycgr 33004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xneg 12777 df-xadd 12778 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-s4 14491 df-edg 27321 df-uhgr 27331 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-nbgr 27603 df-uvtx 27656 df-cplgr 27681 df-cusgr 27682 df-wlks 27869 df-trls 27962 df-pths 27985 df-crcts 28055 df-cycls 28056 df-acycgr 33005 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |