Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgracyclt3v Structured version   Visualization version   GIF version

Theorem cusgracyclt3v 35120
Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.)
Hypothesis
Ref Expression
cusgracyclt3v.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgracyclt3v (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))

Proof of Theorem cusgracyclt3v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacycgr 35109 . . 3 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
2 3nn0 12527 . . . . . . 7 3 ∈ ℕ0
3 cusgracyclt3v.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
43fvexi 6900 . . . . . . . 8 𝑉 ∈ V
5 hashxnn0 14360 . . . . . . . 8 (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*)
64, 5ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℕ0*
7 xnn0lem1lt 13268 . . . . . . 7 ((3 ∈ ℕ0 ∧ (♯‘𝑉) ∈ ℕ0*) → (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉)))
82, 6, 7mp2an 692 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉))
9 3re 12328 . . . . . . . 8 3 ∈ ℝ
109rexri 11301 . . . . . . 7 3 ∈ ℝ*
11 xnn0xr 12587 . . . . . . . 8 ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*)
126, 11ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℝ*
13 xrlenlt 11308 . . . . . . 7 ((3 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3))
1410, 12, 13mp2an 692 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3)
15 3m1e2 12376 . . . . . . 7 (3 − 1) = 2
1615breq1i 5130 . . . . . 6 ((3 − 1) < (♯‘𝑉) ↔ 2 < (♯‘𝑉))
178, 14, 163bitr3i 301 . . . . 5 (¬ (♯‘𝑉) < 3 ↔ 2 < (♯‘𝑉))
183cusgr3cyclex 35100 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
19 3ne0 12354 . . . . . . . . . . 11 3 ≠ 0
20 neeq1 2993 . . . . . . . . . . 11 ((♯‘𝑓) = 3 → ((♯‘𝑓) ≠ 0 ↔ 3 ≠ 0))
2119, 20mpbiri 258 . . . . . . . . . 10 ((♯‘𝑓) = 3 → (♯‘𝑓) ≠ 0)
22 hasheq0 14384 . . . . . . . . . . . 12 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2322elv 3468 . . . . . . . . . . 11 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2423necon3bii 2983 . . . . . . . . . 10 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
2521, 24sylib 218 . . . . . . . . 9 ((♯‘𝑓) = 3 → 𝑓 ≠ ∅)
2625anim2i 617 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
27262eximi 1835 . . . . . . 7 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2818, 27syl 17 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2928ex 412 . . . . 5 (𝐺 ∈ ComplUSGraph → (2 < (♯‘𝑉) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3017, 29biimtrid 242 . . . 4 (𝐺 ∈ ComplUSGraph → (¬ (♯‘𝑉) < 3 → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3130con1d 145 . . 3 (𝐺 ∈ ComplUSGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → (♯‘𝑉) < 3))
321, 31sylbid 240 . 2 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph → (♯‘𝑉) < 3))
33 cusgrusgr 29364 . . . . . . 7 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
343usgrcyclgt2v 35095 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉))
35343expib 1122 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3633, 35syl 17 . . . . . 6 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3736, 17imbitrrdi 252 . . . . 5 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3837exlimdvv 1933 . . . 4 (𝐺 ∈ ComplUSGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3938con2d 134 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
4039, 1sylibrd 259 . 2 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → 𝐺 ∈ AcyclicGraph))
4132, 40impbid 212 1 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  Vcvv 3463  c0 4313   class class class wbr 5123  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138  *cxr 11276   < clt 11277  cle 11278  cmin 11474  2c2 12303  3c3 12304  0cn0 12509  0*cxnn0 12582  chash 14351  Vtxcvtx 28941  USGraphcusgr 29094  ComplUSGraphccusgr 29355  Cyclesccycls 29733  AcyclicGraphcacycgr 35106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-n0 12510  df-xnn0 12583  df-z 12597  df-uz 12861  df-xneg 13136  df-xadd 13137  df-fz 13530  df-fzo 13677  df-hash 14352  df-word 14535  df-concat 14591  df-s1 14616  df-s2 14869  df-s3 14870  df-s4 14871  df-edg 28993  df-uhgr 29003  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-nbgr 29278  df-uvtx 29331  df-cplgr 29356  df-cusgr 29357  df-wlks 29545  df-trls 29638  df-pths 29662  df-crcts 29734  df-cycls 29735  df-acycgr 35107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator