Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgracyclt3v Structured version   Visualization version   GIF version

Theorem cusgracyclt3v 35150
Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.)
Hypothesis
Ref Expression
cusgracyclt3v.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgracyclt3v (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))

Proof of Theorem cusgracyclt3v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isacycgr 35139 . . 3 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
2 3nn0 12467 . . . . . . 7 3 ∈ ℕ0
3 cusgracyclt3v.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
43fvexi 6875 . . . . . . . 8 𝑉 ∈ V
5 hashxnn0 14311 . . . . . . . 8 (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*)
64, 5ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℕ0*
7 xnn0lem1lt 13211 . . . . . . 7 ((3 ∈ ℕ0 ∧ (♯‘𝑉) ∈ ℕ0*) → (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉)))
82, 6, 7mp2an 692 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉))
9 3re 12273 . . . . . . . 8 3 ∈ ℝ
109rexri 11239 . . . . . . 7 3 ∈ ℝ*
11 xnn0xr 12527 . . . . . . . 8 ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*)
126, 11ax-mp 5 . . . . . . 7 (♯‘𝑉) ∈ ℝ*
13 xrlenlt 11246 . . . . . . 7 ((3 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3))
1410, 12, 13mp2an 692 . . . . . 6 (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3)
15 3m1e2 12316 . . . . . . 7 (3 − 1) = 2
1615breq1i 5117 . . . . . 6 ((3 − 1) < (♯‘𝑉) ↔ 2 < (♯‘𝑉))
178, 14, 163bitr3i 301 . . . . 5 (¬ (♯‘𝑉) < 3 ↔ 2 < (♯‘𝑉))
183cusgr3cyclex 35130 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
19 3ne0 12299 . . . . . . . . . . 11 3 ≠ 0
20 neeq1 2988 . . . . . . . . . . 11 ((♯‘𝑓) = 3 → ((♯‘𝑓) ≠ 0 ↔ 3 ≠ 0))
2119, 20mpbiri 258 . . . . . . . . . 10 ((♯‘𝑓) = 3 → (♯‘𝑓) ≠ 0)
22 hasheq0 14335 . . . . . . . . . . . 12 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2322elv 3455 . . . . . . . . . . 11 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2423necon3bii 2978 . . . . . . . . . 10 ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅)
2521, 24sylib 218 . . . . . . . . 9 ((♯‘𝑓) = 3 → 𝑓 ≠ ∅)
2625anim2i 617 . . . . . . . 8 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
27262eximi 1836 . . . . . . 7 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2818, 27syl 17 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅))
2928ex 412 . . . . 5 (𝐺 ∈ ComplUSGraph → (2 < (♯‘𝑉) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3017, 29biimtrid 242 . . . 4 (𝐺 ∈ ComplUSGraph → (¬ (♯‘𝑉) < 3 → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
3130con1d 145 . . 3 (𝐺 ∈ ComplUSGraph → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → (♯‘𝑉) < 3))
321, 31sylbid 240 . 2 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph → (♯‘𝑉) < 3))
33 cusgrusgr 29353 . . . . . . 7 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
343usgrcyclgt2v 35125 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉))
35343expib 1122 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3633, 35syl 17 . . . . . 6 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → 2 < (♯‘𝑉)))
3736, 17imbitrrdi 252 . . . . 5 (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3837exlimdvv 1934 . . . 4 (𝐺 ∈ ComplUSGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3))
3938con2d 134 . . 3 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
4039, 1sylibrd 259 . 2 (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → 𝐺 ∈ AcyclicGraph))
4132, 40impbid 212 1 (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  Vcvv 3450  c0 4299   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  *cxr 11214   < clt 11215  cle 11216  cmin 11412  2c2 12248  3c3 12249  0cn0 12449  0*cxnn0 12522  chash 14302  Vtxcvtx 28930  USGraphcusgr 29083  ComplUSGraphccusgr 29344  Cyclesccycls 29722  AcyclicGraphcacycgr 35136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-xneg 13079  df-xadd 13080  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-s4 14823  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-umgr 29017  df-uspgr 29084  df-usgr 29085  df-nbgr 29267  df-uvtx 29320  df-cplgr 29345  df-cusgr 29346  df-wlks 29534  df-trls 29627  df-pths 29651  df-crcts 29723  df-cycls 29724  df-acycgr 35137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator