| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cusgracyclt3v | Structured version Visualization version GIF version | ||
| Description: A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.) |
| Ref | Expression |
|---|---|
| cusgracyclt3v.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgracyclt3v | ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isacycgr 35117 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | |
| 2 | 3nn0 12420 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 3 | cusgracyclt3v.1 | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | fvexi 6840 | . . . . . . . 8 ⊢ 𝑉 ∈ V |
| 5 | hashxnn0 14264 | . . . . . . . 8 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝑉) ∈ ℕ0* |
| 7 | xnn0lem1lt 13164 | . . . . . . 7 ⊢ ((3 ∈ ℕ0 ∧ (♯‘𝑉) ∈ ℕ0*) → (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉))) | |
| 8 | 2, 6, 7 | mp2an 692 | . . . . . 6 ⊢ (3 ≤ (♯‘𝑉) ↔ (3 − 1) < (♯‘𝑉)) |
| 9 | 3re 12226 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 10 | 9 | rexri 11192 | . . . . . . 7 ⊢ 3 ∈ ℝ* |
| 11 | xnn0xr 12480 | . . . . . . . 8 ⊢ ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*) | |
| 12 | 6, 11 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝑉) ∈ ℝ* |
| 13 | xrlenlt 11199 | . . . . . . 7 ⊢ ((3 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3)) | |
| 14 | 10, 12, 13 | mp2an 692 | . . . . . 6 ⊢ (3 ≤ (♯‘𝑉) ↔ ¬ (♯‘𝑉) < 3) |
| 15 | 3m1e2 12269 | . . . . . . 7 ⊢ (3 − 1) = 2 | |
| 16 | 15 | breq1i 5102 | . . . . . 6 ⊢ ((3 − 1) < (♯‘𝑉) ↔ 2 < (♯‘𝑉)) |
| 17 | 8, 14, 16 | 3bitr3i 301 | . . . . 5 ⊢ (¬ (♯‘𝑉) < 3 ↔ 2 < (♯‘𝑉)) |
| 18 | 3 | cusgr3cyclex 35108 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
| 19 | 3ne0 12252 | . . . . . . . . . . 11 ⊢ 3 ≠ 0 | |
| 20 | neeq1 2987 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) = 3 → ((♯‘𝑓) ≠ 0 ↔ 3 ≠ 0)) | |
| 21 | 19, 20 | mpbiri 258 | . . . . . . . . . 10 ⊢ ((♯‘𝑓) = 3 → (♯‘𝑓) ≠ 0) |
| 22 | hasheq0 14288 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)) | |
| 23 | 22 | elv 3443 | . . . . . . . . . . 11 ⊢ ((♯‘𝑓) = 0 ↔ 𝑓 = ∅) |
| 24 | 23 | necon3bii 2977 | . . . . . . . . . 10 ⊢ ((♯‘𝑓) ≠ 0 ↔ 𝑓 ≠ ∅) |
| 25 | 21, 24 | sylib 218 | . . . . . . . . 9 ⊢ ((♯‘𝑓) = 3 → 𝑓 ≠ ∅) |
| 26 | 25 | anim2i 617 | . . . . . . . 8 ⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 27 | 26 | 2eximi 1836 | . . . . . . 7 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 28 | 18, 27 | syl 17 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) |
| 29 | 28 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → (2 < (♯‘𝑉) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 30 | 17, 29 | biimtrid 242 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → (¬ (♯‘𝑉) < 3 → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 31 | 30 | con1d 145 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → (♯‘𝑉) < 3)) |
| 32 | 1, 31 | sylbid 240 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph → (♯‘𝑉) < 3)) |
| 33 | cusgrusgr 29382 | . . . . . . 7 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 34 | 3 | usgrcyclgt2v 35103 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉)) |
| 35 | 34 | 3expib 1122 | . . . . . . 7 ⊢ (𝐺 ∈ USGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉))) |
| 36 | 33, 35 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → 2 < (♯‘𝑉))) |
| 37 | 36, 17 | imbitrrdi 252 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3)) |
| 38 | 37 | exlimdvv 1934 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅) → ¬ (♯‘𝑉) < 3)) |
| 39 | 38 | con2d 134 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 40 | 39, 1 | sylibrd 259 | . 2 ⊢ (𝐺 ∈ ComplUSGraph → ((♯‘𝑉) < 3 → 𝐺 ∈ AcyclicGraph)) |
| 41 | 32, 40 | impbid 212 | 1 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 − cmin 11365 2c2 12201 3c3 12202 ℕ0cn0 12402 ℕ0*cxnn0 12475 ♯chash 14255 Vtxcvtx 28959 USGraphcusgr 29112 ComplUSGraphccusgr 29373 Cyclesccycls 29748 AcyclicGraphcacycgr 35114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-xneg 13032 df-xadd 13033 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-s4 14775 df-edg 29011 df-uhgr 29021 df-upgr 29045 df-umgr 29046 df-uspgr 29113 df-usgr 29114 df-nbgr 29296 df-uvtx 29349 df-cplgr 29374 df-cusgr 29375 df-wlks 29563 df-trls 29654 df-pths 29677 df-crcts 29749 df-cycls 29750 df-acycgr 35115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |