MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize Structured version   Visualization version   GIF version

Theorem cusgrsize 29486
Description: The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ ℕ0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 − 1)∗𝑛) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrsize ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2))

Proof of Theorem cusgrsize
Dummy variables 𝑒 𝑓 𝑛 𝑣 𝑐 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrsizeindb0.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgval 29080 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2762 . . . 4 𝐸 = ran (iEdg‘𝐺)
43a1i 11 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐸 = ran (iEdg‘𝐺))
54fveq2d 6910 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = (♯‘ran (iEdg‘𝐺)))
6 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
76opeq1i 4880 . . . 4 𝑉, (iEdg‘𝐺)⟩ = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
8 cusgrop 29469 . . . 4 (𝐺 ∈ ComplUSGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplUSGraph)
97, 8eqeltrid 2842 . . 3 (𝐺 ∈ ComplUSGraph → ⟨𝑉, (iEdg‘𝐺)⟩ ∈ ComplUSGraph)
10 fvex 6919 . . . 4 (iEdg‘𝐺) ∈ V
11 fvex 6919 . . . . 5 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
12 rabexg 5342 . . . . . 6 ((Edg‘⟨𝑣, 𝑒⟩) ∈ V → {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} ∈ V)
1312resiexd 7235 . . . . 5 ((Edg‘⟨𝑣, 𝑒⟩) ∈ V → ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) ∈ V)
1411, 13ax-mp 5 . . . 4 ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) ∈ V
15 rneq 5949 . . . . . 6 (𝑒 = (iEdg‘𝐺) → ran 𝑒 = ran (iEdg‘𝐺))
1615fveq2d 6910 . . . . 5 (𝑒 = (iEdg‘𝐺) → (♯‘ran 𝑒) = (♯‘ran (iEdg‘𝐺)))
17 fveq2 6906 . . . . . 6 (𝑣 = 𝑉 → (♯‘𝑣) = (♯‘𝑉))
1817oveq1d 7445 . . . . 5 (𝑣 = 𝑉 → ((♯‘𝑣)C2) = ((♯‘𝑉)C2))
1916, 18eqeqan12rd 2749 . . . 4 ((𝑣 = 𝑉𝑒 = (iEdg‘𝐺)) → ((♯‘ran 𝑒) = ((♯‘𝑣)C2) ↔ (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2)))
20 rneq 5949 . . . . . 6 (𝑒 = 𝑓 → ran 𝑒 = ran 𝑓)
2120fveq2d 6910 . . . . 5 (𝑒 = 𝑓 → (♯‘ran 𝑒) = (♯‘ran 𝑓))
22 fveq2 6906 . . . . . 6 (𝑣 = 𝑤 → (♯‘𝑣) = (♯‘𝑤))
2322oveq1d 7445 . . . . 5 (𝑣 = 𝑤 → ((♯‘𝑣)C2) = ((♯‘𝑤)C2))
2421, 23eqeqan12rd 2749 . . . 4 ((𝑣 = 𝑤𝑒 = 𝑓) → ((♯‘ran 𝑒) = ((♯‘𝑣)C2) ↔ (♯‘ran 𝑓) = ((♯‘𝑤)C2)))
25 vex 3481 . . . . . . 7 𝑣 ∈ V
26 vex 3481 . . . . . . 7 𝑒 ∈ V
2725, 26opvtxfvi 29040 . . . . . 6 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
2827eqcomi 2743 . . . . 5 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
29 eqid 2734 . . . . 5 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
30 eqid 2734 . . . . 5 {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} = {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}
31 eqid 2734 . . . . 5 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩
3228, 29, 30, 31cusgrres 29480 . . . 4 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩ ∈ ComplUSGraph)
33 rneq 5949 . . . . . . 7 (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) → ran 𝑓 = ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}))
3433fveq2d 6910 . . . . . 6 (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) → (♯‘ran 𝑓) = (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})))
3534adantl 481 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → (♯‘ran 𝑓) = (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})))
36 fveq2 6906 . . . . . . 7 (𝑤 = (𝑣 ∖ {𝑛}) → (♯‘𝑤) = (♯‘(𝑣 ∖ {𝑛})))
3736adantr 480 . . . . . 6 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → (♯‘𝑤) = (♯‘(𝑣 ∖ {𝑛})))
3837oveq1d 7445 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → ((♯‘𝑤)C2) = ((♯‘(𝑣 ∖ {𝑛}))C2))
3935, 38eqeq12d 2750 . . . 4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → ((♯‘ran 𝑓) = ((♯‘𝑤)C2) ↔ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
40 edgopval 29082 . . . . . . . . 9 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
4140el2v 3484 . . . . . . . 8 (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒
4241a1i 11 . . . . . . 7 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
4342eqcomd 2740 . . . . . 6 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → ran 𝑒 = (Edg‘⟨𝑣, 𝑒⟩))
4443fveq2d 6910 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘ran 𝑒) = (♯‘(Edg‘⟨𝑣, 𝑒⟩)))
45 cusgrusgr 29450 . . . . . . 7 (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph → ⟨𝑣, 𝑒⟩ ∈ USGraph)
46 usgruhgr 29217 . . . . . . 7 (⟨𝑣, 𝑒⟩ ∈ USGraph → ⟨𝑣, 𝑒⟩ ∈ UHGraph)
4745, 46syl 17 . . . . . 6 (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph → ⟨𝑣, 𝑒⟩ ∈ UHGraph)
4828, 29cusgrsizeindb0 29481 . . . . . 6 ((⟨𝑣, 𝑒⟩ ∈ UHGraph ∧ (♯‘𝑣) = 0) → (♯‘(Edg‘⟨𝑣, 𝑒⟩)) = ((♯‘𝑣)C2))
4947, 48sylan 580 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘(Edg‘⟨𝑣, 𝑒⟩)) = ((♯‘𝑣)C2))
5044, 49eqtrd 2774 . . . 4 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
51 rnresi 6094 . . . . . . . . . 10 ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) = {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}
5251fveq2i 6909 . . . . . . . . 9 (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = (♯‘{𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})
5341a1i 11 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
5453rabeqdv 3448 . . . . . . . . . 10 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} = {𝑐 ∈ ran 𝑒𝑛𝑐})
5554fveq2d 6910 . . . . . . . . 9 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (♯‘{𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) = (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}))
5652, 55eqtrid 2786 . . . . . . . 8 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}))
5756eqeq1d 2736 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2) ↔ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
5857biimpd 229 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2) → (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
5958imdistani 568 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
6041eqcomi 2743 . . . . . . 7 ran 𝑒 = (Edg‘⟨𝑣, 𝑒⟩)
61 eqid 2734 . . . . . . 7 {𝑐 ∈ ran 𝑒𝑛𝑐} = {𝑐 ∈ ran 𝑒𝑛𝑐}
6228, 60, 61cusgrsize2inds 29485 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))))
6362imp31 417 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
6459, 63syl 17 . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
6510, 14, 19, 24, 32, 39, 50, 64opfi1ind 14547 . . 3 ((⟨𝑉, (iEdg‘𝐺)⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2))
669, 65sylan 580 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2))
675, 66eqtrd 2774 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wnel 3043  {crab 3432  Vcvv 3477  cdif 3959  {csn 4630  cop 4636   I cid 5581  ran crn 5689  cres 5690  cfv 6562  (class class class)co 7430  Fincfn 8983  0cc0 11152  1c1 11153   + caddc 11155  2c2 12318  0cn0 12523  Ccbc 14337  chash 14365  Vtxcvtx 29027  iEdgciedg 29028  Edgcedg 29078  UHGraphcuhgr 29087  USGraphcusgr 29180  ComplUSGraphccusgr 29441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-fac 14309  df-bc 14338  df-hash 14366  df-vtx 29029  df-iedg 29030  df-edg 29079  df-uhgr 29089  df-upgr 29113  df-umgr 29114  df-uspgr 29181  df-usgr 29182  df-fusgr 29348  df-nbgr 29364  df-uvtx 29417  df-cplgr 29442  df-cusgr 29443
This theorem is referenced by:  fusgrmaxsize  29496
  Copyright terms: Public domain W3C validator