MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize Structured version   Visualization version   GIF version

Theorem cusgrsize 28749
Description: The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ β„•0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 βˆ’ 1)βˆ—π‘›) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtxβ€˜πΊ)
cusgrsizeindb0.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
cusgrsize ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) β†’ (β™―β€˜πΈ) = ((β™―β€˜π‘‰)C2))

Proof of Theorem cusgrsize
Dummy variables 𝑒 𝑓 𝑛 𝑣 𝑐 𝑀 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrsizeindb0.e . . . . 5 𝐸 = (Edgβ€˜πΊ)
2 edgval 28347 . . . . 5 (Edgβ€˜πΊ) = ran (iEdgβ€˜πΊ)
31, 2eqtri 2760 . . . 4 𝐸 = ran (iEdgβ€˜πΊ)
43a1i 11 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) β†’ 𝐸 = ran (iEdgβ€˜πΊ))
54fveq2d 6895 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) β†’ (β™―β€˜πΈ) = (β™―β€˜ran (iEdgβ€˜πΊ)))
6 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
76opeq1i 4876 . . . 4 βŸ¨π‘‰, (iEdgβ€˜πΊ)⟩ = ⟨(Vtxβ€˜πΊ), (iEdgβ€˜πΊ)⟩
8 cusgrop 28733 . . . 4 (𝐺 ∈ ComplUSGraph β†’ ⟨(Vtxβ€˜πΊ), (iEdgβ€˜πΊ)⟩ ∈ ComplUSGraph)
97, 8eqeltrid 2837 . . 3 (𝐺 ∈ ComplUSGraph β†’ βŸ¨π‘‰, (iEdgβ€˜πΊ)⟩ ∈ ComplUSGraph)
10 fvex 6904 . . . 4 (iEdgβ€˜πΊ) ∈ V
11 fvex 6904 . . . . 5 (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∈ V
12 rabexg 5331 . . . . . 6 ((Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∈ V β†’ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐} ∈ V)
1312resiexd 7220 . . . . 5 ((Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∈ V β†’ ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}) ∈ V)
1411, 13ax-mp 5 . . . 4 ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}) ∈ V
15 rneq 5935 . . . . . 6 (𝑒 = (iEdgβ€˜πΊ) β†’ ran 𝑒 = ran (iEdgβ€˜πΊ))
1615fveq2d 6895 . . . . 5 (𝑒 = (iEdgβ€˜πΊ) β†’ (β™―β€˜ran 𝑒) = (β™―β€˜ran (iEdgβ€˜πΊ)))
17 fveq2 6891 . . . . . 6 (𝑣 = 𝑉 β†’ (β™―β€˜π‘£) = (β™―β€˜π‘‰))
1817oveq1d 7426 . . . . 5 (𝑣 = 𝑉 β†’ ((β™―β€˜π‘£)C2) = ((β™―β€˜π‘‰)C2))
1916, 18eqeqan12rd 2747 . . . 4 ((𝑣 = 𝑉 ∧ 𝑒 = (iEdgβ€˜πΊ)) β†’ ((β™―β€˜ran 𝑒) = ((β™―β€˜π‘£)C2) ↔ (β™―β€˜ran (iEdgβ€˜πΊ)) = ((β™―β€˜π‘‰)C2)))
20 rneq 5935 . . . . . 6 (𝑒 = 𝑓 β†’ ran 𝑒 = ran 𝑓)
2120fveq2d 6895 . . . . 5 (𝑒 = 𝑓 β†’ (β™―β€˜ran 𝑒) = (β™―β€˜ran 𝑓))
22 fveq2 6891 . . . . . 6 (𝑣 = 𝑀 β†’ (β™―β€˜π‘£) = (β™―β€˜π‘€))
2322oveq1d 7426 . . . . 5 (𝑣 = 𝑀 β†’ ((β™―β€˜π‘£)C2) = ((β™―β€˜π‘€)C2))
2421, 23eqeqan12rd 2747 . . . 4 ((𝑣 = 𝑀 ∧ 𝑒 = 𝑓) β†’ ((β™―β€˜ran 𝑒) = ((β™―β€˜π‘£)C2) ↔ (β™―β€˜ran 𝑓) = ((β™―β€˜π‘€)C2)))
25 vex 3478 . . . . . . 7 𝑣 ∈ V
26 vex 3478 . . . . . . 7 𝑒 ∈ V
2725, 26opvtxfvi 28307 . . . . . 6 (Vtxβ€˜βŸ¨π‘£, π‘’βŸ©) = 𝑣
2827eqcomi 2741 . . . . 5 𝑣 = (Vtxβ€˜βŸ¨π‘£, π‘’βŸ©)
29 eqid 2732 . . . . 5 (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) = (Edgβ€˜βŸ¨π‘£, π‘’βŸ©)
30 eqid 2732 . . . . 5 {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐} = {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}
31 eqid 2732 . . . . 5 ⟨(𝑣 βˆ– {𝑛}), ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})⟩ = ⟨(𝑣 βˆ– {𝑛}), ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})⟩
3228, 29, 30, 31cusgrres 28743 . . . 4 ((βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ 𝑛 ∈ 𝑣) β†’ ⟨(𝑣 βˆ– {𝑛}), ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})⟩ ∈ ComplUSGraph)
33 rneq 5935 . . . . . . 7 (𝑓 = ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}) β†’ ran 𝑓 = ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}))
3433fveq2d 6895 . . . . . 6 (𝑓 = ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}) β†’ (β™―β€˜ran 𝑓) = (β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})))
3534adantl 482 . . . . 5 ((𝑀 = (𝑣 βˆ– {𝑛}) ∧ 𝑓 = ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) β†’ (β™―β€˜ran 𝑓) = (β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})))
36 fveq2 6891 . . . . . . 7 (𝑀 = (𝑣 βˆ– {𝑛}) β†’ (β™―β€˜π‘€) = (β™―β€˜(𝑣 βˆ– {𝑛})))
3736adantr 481 . . . . . 6 ((𝑀 = (𝑣 βˆ– {𝑛}) ∧ 𝑓 = ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) β†’ (β™―β€˜π‘€) = (β™―β€˜(𝑣 βˆ– {𝑛})))
3837oveq1d 7426 . . . . 5 ((𝑀 = (𝑣 βˆ– {𝑛}) ∧ 𝑓 = ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) β†’ ((β™―β€˜π‘€)C2) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2))
3935, 38eqeq12d 2748 . . . 4 ((𝑀 = (𝑣 βˆ– {𝑛}) ∧ 𝑓 = ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) β†’ ((β™―β€˜ran 𝑓) = ((β™―β€˜π‘€)C2) ↔ (β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2)))
40 edgopval 28349 . . . . . . . . 9 ((𝑣 ∈ V ∧ 𝑒 ∈ V) β†’ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) = ran 𝑒)
4140el2v 3482 . . . . . . . 8 (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) = ran 𝑒
4241a1i 11 . . . . . . 7 ((βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = 0) β†’ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) = ran 𝑒)
4342eqcomd 2738 . . . . . 6 ((βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = 0) β†’ ran 𝑒 = (Edgβ€˜βŸ¨π‘£, π‘’βŸ©))
4443fveq2d 6895 . . . . 5 ((βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = 0) β†’ (β™―β€˜ran 𝑒) = (β™―β€˜(Edgβ€˜βŸ¨π‘£, π‘’βŸ©)))
45 cusgrusgr 28714 . . . . . . 7 (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph β†’ βŸ¨π‘£, π‘’βŸ© ∈ USGraph)
46 usgruhgr 28481 . . . . . . 7 (βŸ¨π‘£, π‘’βŸ© ∈ USGraph β†’ βŸ¨π‘£, π‘’βŸ© ∈ UHGraph)
4745, 46syl 17 . . . . . 6 (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph β†’ βŸ¨π‘£, π‘’βŸ© ∈ UHGraph)
4828, 29cusgrsizeindb0 28744 . . . . . 6 ((βŸ¨π‘£, π‘’βŸ© ∈ UHGraph ∧ (β™―β€˜π‘£) = 0) β†’ (β™―β€˜(Edgβ€˜βŸ¨π‘£, π‘’βŸ©)) = ((β™―β€˜π‘£)C2))
4947, 48sylan 580 . . . . 5 ((βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = 0) β†’ (β™―β€˜(Edgβ€˜βŸ¨π‘£, π‘’βŸ©)) = ((β™―β€˜π‘£)C2))
5044, 49eqtrd 2772 . . . 4 ((βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = 0) β†’ (β™―β€˜ran 𝑒) = ((β™―β€˜π‘£)C2))
51 rnresi 6074 . . . . . . . . . 10 ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}) = {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}
5251fveq2i 6894 . . . . . . . . 9 (β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) = (β™―β€˜{𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})
5341a1i 11 . . . . . . . . . . 11 (((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) β†’ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) = ran 𝑒)
5453rabeqdv 3447 . . . . . . . . . 10 (((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) β†’ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐} = {𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐})
5554fveq2d 6895 . . . . . . . . 9 (((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) β†’ (β™―β€˜{𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐}) = (β™―β€˜{𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}))
5652, 55eqtrid 2784 . . . . . . . 8 (((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) β†’ (β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) = (β™―β€˜{𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}))
5756eqeq1d 2734 . . . . . . 7 (((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) β†’ ((β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2) ↔ (β™―β€˜{𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2)))
5857biimpd 228 . . . . . 6 (((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) β†’ ((β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2) β†’ (β™―β€˜{𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2)))
5958imdistani 569 . . . . 5 ((((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2)) β†’ (((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (β™―β€˜{𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2)))
6041eqcomi 2741 . . . . . . 7 ran 𝑒 = (Edgβ€˜βŸ¨π‘£, π‘’βŸ©)
61 eqid 2732 . . . . . . 7 {𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐} = {𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}
6228, 60, 61cusgrsize2inds 28748 . . . . . 6 ((𝑦 + 1) ∈ β„•0 β†’ ((βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) β†’ ((β™―β€˜{𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2) β†’ (β™―β€˜ran 𝑒) = ((β™―β€˜π‘£)C2))))
6362imp31 418 . . . . 5 ((((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (β™―β€˜{𝑐 ∈ ran 𝑒 ∣ 𝑛 βˆ‰ 𝑐}) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2)) β†’ (β™―β€˜ran 𝑒) = ((β™―β€˜π‘£)C2))
6459, 63syl 17 . . . 4 ((((𝑦 + 1) ∈ β„•0 ∧ (βŸ¨π‘£, π‘’βŸ© ∈ ComplUSGraph ∧ (β™―β€˜π‘£) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ (β™―β€˜ran ( I β†Ύ {𝑐 ∈ (Edgβ€˜βŸ¨π‘£, π‘’βŸ©) ∣ 𝑛 βˆ‰ 𝑐})) = ((β™―β€˜(𝑣 βˆ– {𝑛}))C2)) β†’ (β™―β€˜ran 𝑒) = ((β™―β€˜π‘£)C2))
6510, 14, 19, 24, 32, 39, 50, 64opfi1ind 14465 . . 3 ((βŸ¨π‘‰, (iEdgβ€˜πΊ)⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) β†’ (β™―β€˜ran (iEdgβ€˜πΊ)) = ((β™―β€˜π‘‰)C2))
669, 65sylan 580 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) β†’ (β™―β€˜ran (iEdgβ€˜πΊ)) = ((β™―β€˜π‘‰)C2))
675, 66eqtrd 2772 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) β†’ (β™―β€˜πΈ) = ((β™―β€˜π‘‰)C2))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βˆ‰ wnel 3046  {crab 3432  Vcvv 3474   βˆ– cdif 3945  {csn 4628  βŸ¨cop 4634   I cid 5573  ran crn 5677   β†Ύ cres 5678  β€˜cfv 6543  (class class class)co 7411  Fincfn 8941  0cc0 11112  1c1 11113   + caddc 11115  2c2 12269  β„•0cn0 12474  Ccbc 14264  β™―chash 14292  Vtxcvtx 28294  iEdgciedg 28295  Edgcedg 28345  UHGraphcuhgr 28354  USGraphcusgr 28447  ComplUSGraphccusgr 28705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-seq 13969  df-fac 14236  df-bc 14265  df-hash 14293  df-vtx 28296  df-iedg 28297  df-edg 28346  df-uhgr 28356  df-upgr 28380  df-umgr 28381  df-uspgr 28448  df-usgr 28449  df-fusgr 28612  df-nbgr 28628  df-uvtx 28681  df-cplgr 28706  df-cusgr 28707
This theorem is referenced by:  fusgrmaxsize  28759
  Copyright terms: Public domain W3C validator