MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize Structured version   Visualization version   GIF version

Theorem cusgrsize 27244
Description: The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ ℕ0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 − 1)∗𝑛) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrsize ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2))

Proof of Theorem cusgrsize
Dummy variables 𝑒 𝑓 𝑛 𝑣 𝑐 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrsizeindb0.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgval 26842 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2821 . . . 4 𝐸 = ran (iEdg‘𝐺)
43a1i 11 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐸 = ran (iEdg‘𝐺))
54fveq2d 6649 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = (♯‘ran (iEdg‘𝐺)))
6 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
76opeq1i 4768 . . . 4 𝑉, (iEdg‘𝐺)⟩ = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
8 cusgrop 27228 . . . 4 (𝐺 ∈ ComplUSGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplUSGraph)
97, 8eqeltrid 2894 . . 3 (𝐺 ∈ ComplUSGraph → ⟨𝑉, (iEdg‘𝐺)⟩ ∈ ComplUSGraph)
10 fvex 6658 . . . 4 (iEdg‘𝐺) ∈ V
11 fvex 6658 . . . . 5 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
12 rabexg 5198 . . . . . 6 ((Edg‘⟨𝑣, 𝑒⟩) ∈ V → {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} ∈ V)
1312resiexd 6956 . . . . 5 ((Edg‘⟨𝑣, 𝑒⟩) ∈ V → ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) ∈ V)
1411, 13ax-mp 5 . . . 4 ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) ∈ V
15 rneq 5770 . . . . . 6 (𝑒 = (iEdg‘𝐺) → ran 𝑒 = ran (iEdg‘𝐺))
1615fveq2d 6649 . . . . 5 (𝑒 = (iEdg‘𝐺) → (♯‘ran 𝑒) = (♯‘ran (iEdg‘𝐺)))
17 fveq2 6645 . . . . . 6 (𝑣 = 𝑉 → (♯‘𝑣) = (♯‘𝑉))
1817oveq1d 7150 . . . . 5 (𝑣 = 𝑉 → ((♯‘𝑣)C2) = ((♯‘𝑉)C2))
1916, 18eqeqan12rd 2817 . . . 4 ((𝑣 = 𝑉𝑒 = (iEdg‘𝐺)) → ((♯‘ran 𝑒) = ((♯‘𝑣)C2) ↔ (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2)))
20 rneq 5770 . . . . . 6 (𝑒 = 𝑓 → ran 𝑒 = ran 𝑓)
2120fveq2d 6649 . . . . 5 (𝑒 = 𝑓 → (♯‘ran 𝑒) = (♯‘ran 𝑓))
22 fveq2 6645 . . . . . 6 (𝑣 = 𝑤 → (♯‘𝑣) = (♯‘𝑤))
2322oveq1d 7150 . . . . 5 (𝑣 = 𝑤 → ((♯‘𝑣)C2) = ((♯‘𝑤)C2))
2421, 23eqeqan12rd 2817 . . . 4 ((𝑣 = 𝑤𝑒 = 𝑓) → ((♯‘ran 𝑒) = ((♯‘𝑣)C2) ↔ (♯‘ran 𝑓) = ((♯‘𝑤)C2)))
25 vex 3444 . . . . . . 7 𝑣 ∈ V
26 vex 3444 . . . . . . 7 𝑒 ∈ V
2725, 26opvtxfvi 26802 . . . . . 6 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
2827eqcomi 2807 . . . . 5 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
29 eqid 2798 . . . . 5 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
30 eqid 2798 . . . . 5 {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} = {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}
31 eqid 2798 . . . . 5 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩
3228, 29, 30, 31cusgrres 27238 . . . 4 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩ ∈ ComplUSGraph)
33 rneq 5770 . . . . . . 7 (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) → ran 𝑓 = ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}))
3433fveq2d 6649 . . . . . 6 (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) → (♯‘ran 𝑓) = (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})))
3534adantl 485 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → (♯‘ran 𝑓) = (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})))
36 fveq2 6645 . . . . . . 7 (𝑤 = (𝑣 ∖ {𝑛}) → (♯‘𝑤) = (♯‘(𝑣 ∖ {𝑛})))
3736adantr 484 . . . . . 6 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → (♯‘𝑤) = (♯‘(𝑣 ∖ {𝑛})))
3837oveq1d 7150 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → ((♯‘𝑤)C2) = ((♯‘(𝑣 ∖ {𝑛}))C2))
3935, 38eqeq12d 2814 . . . 4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → ((♯‘ran 𝑓) = ((♯‘𝑤)C2) ↔ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
40 edgopval 26844 . . . . . . . . 9 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
4140el2v 3448 . . . . . . . 8 (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒
4241a1i 11 . . . . . . 7 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
4342eqcomd 2804 . . . . . 6 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → ran 𝑒 = (Edg‘⟨𝑣, 𝑒⟩))
4443fveq2d 6649 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘ran 𝑒) = (♯‘(Edg‘⟨𝑣, 𝑒⟩)))
45 cusgrusgr 27209 . . . . . . 7 (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph → ⟨𝑣, 𝑒⟩ ∈ USGraph)
46 usgruhgr 26976 . . . . . . 7 (⟨𝑣, 𝑒⟩ ∈ USGraph → ⟨𝑣, 𝑒⟩ ∈ UHGraph)
4745, 46syl 17 . . . . . 6 (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph → ⟨𝑣, 𝑒⟩ ∈ UHGraph)
4828, 29cusgrsizeindb0 27239 . . . . . 6 ((⟨𝑣, 𝑒⟩ ∈ UHGraph ∧ (♯‘𝑣) = 0) → (♯‘(Edg‘⟨𝑣, 𝑒⟩)) = ((♯‘𝑣)C2))
4947, 48sylan 583 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘(Edg‘⟨𝑣, 𝑒⟩)) = ((♯‘𝑣)C2))
5044, 49eqtrd 2833 . . . 4 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
51 rnresi 5910 . . . . . . . . . 10 ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) = {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}
5251fveq2i 6648 . . . . . . . . 9 (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = (♯‘{𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})
5341a1i 11 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
5453rabeqdv 3432 . . . . . . . . . 10 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} = {𝑐 ∈ ran 𝑒𝑛𝑐})
5554fveq2d 6649 . . . . . . . . 9 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (♯‘{𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) = (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}))
5652, 55syl5eq 2845 . . . . . . . 8 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}))
5756eqeq1d 2800 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2) ↔ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
5857biimpd 232 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2) → (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
5958imdistani 572 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
6041eqcomi 2807 . . . . . . 7 ran 𝑒 = (Edg‘⟨𝑣, 𝑒⟩)
61 eqid 2798 . . . . . . 7 {𝑐 ∈ ran 𝑒𝑛𝑐} = {𝑐 ∈ ran 𝑒𝑛𝑐}
6228, 60, 61cusgrsize2inds 27243 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))))
6362imp31 421 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
6459, 63syl 17 . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
6510, 14, 19, 24, 32, 39, 50, 64opfi1ind 13856 . . 3 ((⟨𝑉, (iEdg‘𝐺)⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2))
669, 65sylan 583 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2))
675, 66eqtrd 2833 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wnel 3091  {crab 3110  Vcvv 3441  cdif 3878  {csn 4525  cop 4531   I cid 5424  ran crn 5520  cres 5521  cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526  1c1 10527   + caddc 10529  2c2 11680  0cn0 11885  Ccbc 13658  chash 13686  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UHGraphcuhgr 26849  USGraphcusgr 26942  ComplUSGraphccusgr 27200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-seq 13365  df-fac 13630  df-bc 13659  df-hash 13687  df-vtx 26791  df-iedg 26792  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-fusgr 27107  df-nbgr 27123  df-uvtx 27176  df-cplgr 27201  df-cusgr 27202
This theorem is referenced by:  fusgrmaxsize  27254
  Copyright terms: Public domain W3C validator