![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrres | Structured version Visualization version GIF version |
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
Ref | Expression |
---|---|
cusgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrres.e | ⊢ 𝐸 = (Edg‘𝐺) |
cusgrres.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
cusgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
cusgrres | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrusgr 26767 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
2 | cusgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | cusgrres.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | cusgrres.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
5 | cusgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
6 | 2, 3, 4, 5 | usgrres1 26662 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
7 | 1, 6 | sylan 575 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
8 | iscusgr 26766 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
9 | usgrupgr 26531 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
10 | 9 | adantr 474 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph) |
11 | 10 | anim1i 608 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉)) |
12 | 11 | anim1i 608 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
13 | 2 | iscplgr 26763 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺))) |
14 | eldifi 3954 | . . . . . . . . . . . . 13 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ 𝑉) | |
15 | 14 | ad2antll 719 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣 ∈ 𝑉) |
16 | eleq1w 2841 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺))) | |
17 | 16 | rspcv 3506 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝑉 → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
18 | 15, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
19 | 18 | ex 403 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
20 | 19 | com23 86 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
21 | 13, 20 | sylbid 232 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
22 | 21 | imp 397 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))) |
23 | 22 | impl 449 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)) |
24 | 2, 3, 4, 5 | uvtxupgrres 26756 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆))) |
25 | 12, 23, 24 | sylc 65 | . . . . 5 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆)) |
26 | 25 | ralrimiva 3147 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
27 | 8, 26 | sylanb 576 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
28 | opex 5164 | . . . . 5 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
29 | 5, 28 | eqeltri 2854 | . . . 4 ⊢ 𝑆 ∈ V |
30 | 2, 3, 4, 5 | upgrres1lem2 26658 | . . . . . 6 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
31 | 30 | eqcomi 2786 | . . . . 5 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
32 | 31 | iscplgr 26763 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
33 | 29, 32 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
34 | 27, 33 | mpbird 249 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplGraph) |
35 | iscusgr 26766 | . 2 ⊢ (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph)) | |
36 | 7, 34, 35 | sylanbrc 578 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∉ wnel 3074 ∀wral 3089 {crab 3093 Vcvv 3397 ∖ cdif 3788 {csn 4397 〈cop 4403 I cid 5260 ↾ cres 5357 ‘cfv 6135 Vtxcvtx 26344 Edgcedg 26395 UPGraphcupgr 26428 USGraphcusgr 26498 UnivVtxcuvtx 26733 ComplGraphccplgr 26757 ComplUSGraphccusgr 26758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-fz 12644 df-hash 13436 df-vtx 26346 df-iedg 26347 df-edg 26396 df-uhgr 26406 df-upgr 26430 df-umgr 26431 df-uspgr 26499 df-usgr 26500 df-nbgr 26680 df-uvtx 26734 df-cplgr 26759 df-cusgr 26760 |
This theorem is referenced by: cusgrsize 26802 |
Copyright terms: Public domain | W3C validator |