| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrres | Structured version Visualization version GIF version | ||
| Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| cusgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrres.e | ⊢ 𝐸 = (Edg‘𝐺) |
| cusgrres.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| cusgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| cusgrres | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrusgr 29353 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 2 | cusgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | cusgrres.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | cusgrres.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 5 | cusgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
| 6 | 2, 3, 4, 5 | usgrres1 29249 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
| 7 | 1, 6 | sylan 580 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
| 8 | iscusgr 29352 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 9 | usgrupgr 29119 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph) |
| 11 | 10 | anim1i 615 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉)) |
| 12 | 11 | anim1i 615 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
| 13 | 2 | iscplgr 29349 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺))) |
| 14 | eldifi 4097 | . . . . . . . . . . . . 13 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ 𝑉) | |
| 15 | 14 | ad2antll 729 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣 ∈ 𝑉) |
| 16 | eleq1w 2812 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺))) | |
| 17 | 16 | rspcv 3587 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝑉 → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
| 18 | 15, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
| 19 | 18 | ex 412 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
| 20 | 19 | com23 86 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
| 21 | 13, 20 | sylbid 240 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
| 22 | 21 | imp 406 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))) |
| 23 | 22 | impl 455 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)) |
| 24 | 2, 3, 4, 5 | uvtxupgrres 29342 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆))) |
| 25 | 12, 23, 24 | sylc 65 | . . . . 5 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆)) |
| 26 | 25 | ralrimiva 3126 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
| 27 | 8, 26 | sylanb 581 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
| 28 | opex 5427 | . . . . 5 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
| 29 | 5, 28 | eqeltri 2825 | . . . 4 ⊢ 𝑆 ∈ V |
| 30 | 2, 3, 4, 5 | upgrres1lem2 29245 | . . . . . 6 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| 31 | 30 | eqcomi 2739 | . . . . 5 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 32 | 31 | iscplgr 29349 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
| 33 | 29, 32 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
| 34 | 27, 33 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplGraph) |
| 35 | iscusgr 29352 | . 2 ⊢ (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph)) | |
| 36 | 7, 34, 35 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ∀wral 3045 {crab 3408 Vcvv 3450 ∖ cdif 3914 {csn 4592 〈cop 4598 I cid 5535 ↾ cres 5643 ‘cfv 6514 Vtxcvtx 28930 Edgcedg 28981 UPGraphcupgr 29014 USGraphcusgr 29083 UnivVtxcuvtx 29319 ComplGraphccplgr 29343 ComplUSGraphccusgr 29344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-nbgr 29267 df-uvtx 29320 df-cplgr 29345 df-cusgr 29346 |
| This theorem is referenced by: cusgrsize 29389 |
| Copyright terms: Public domain | W3C validator |