MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrres Structured version   Visualization version   GIF version

Theorem cusgrres 28694
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.)
Hypotheses
Ref Expression
cusgrres.v 𝑉 = (Vtx‘𝐺)
cusgrres.e 𝐸 = (Edg‘𝐺)
cusgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
cusgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
cusgrres ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem cusgrres
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 28665 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
3 cusgrres.e . . . 4 𝐸 = (Edg‘𝐺)
4 cusgrres.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
5 cusgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
62, 3, 4, 5usgrres1 28561 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
71, 6sylan 580 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
8 iscusgr 28664 . . . 4 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
9 usgrupgr 28431 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
109adantr 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph)
1110anim1i 615 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁𝑉))
1211anim1i 615 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})))
132iscplgr 28661 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺)))
14 eldifi 4125 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝑉)
1514ad2antll 727 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣𝑉)
16 eleq1w 2816 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺)))
1716rspcv 3608 . . . . . . . . . . . 12 (𝑣𝑉 → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1815, 17syl 17 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1918ex 413 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))))
2019com23 86 . . . . . . . . 9 (𝐺 ∈ USGraph → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2113, 20sylbid 239 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2221imp 407 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))
2322impl 456 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))
242, 3, 4, 5uvtxupgrres 28654 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆)))
2512, 23, 24sylc 65 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆))
2625ralrimiva 3146 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
278, 26sylanb 581 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
28 opex 5463 . . . . 5 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
295, 28eqeltri 2829 . . . 4 𝑆 ∈ V
302, 3, 4, 5upgrres1lem2 28557 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3130eqcomi 2741 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
3231iscplgr 28661 . . . 4 (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3329, 32mp1i 13 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3427, 33mpbird 256 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplGraph)
35 iscusgr 28664 . 2 (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph))
367, 34, 35sylanbrc 583 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wnel 3046  wral 3061  {crab 3432  Vcvv 3474  cdif 3944  {csn 4627  cop 4633   I cid 5572  cres 5677  cfv 6540  Vtxcvtx 28245  Edgcedg 28296  UPGraphcupgr 28329  USGraphcusgr 28398  UnivVtxcuvtx 28631  ComplGraphccplgr 28655  ComplUSGraphccusgr 28656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-vtx 28247  df-iedg 28248  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-umgr 28332  df-uspgr 28399  df-usgr 28400  df-nbgr 28579  df-uvtx 28632  df-cplgr 28657  df-cusgr 28658
This theorem is referenced by:  cusgrsize  28700
  Copyright terms: Public domain W3C validator