MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrres Structured version   Visualization version   GIF version

Theorem cusgrres 29140
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.)
Hypotheses
Ref Expression
cusgrres.v 𝑉 = (Vtx‘𝐺)
cusgrres.e 𝐸 = (Edg‘𝐺)
cusgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
cusgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
cusgrres ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem cusgrres
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 29111 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
3 cusgrres.e . . . 4 𝐸 = (Edg‘𝐺)
4 cusgrres.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
5 cusgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
62, 3, 4, 5usgrres1 29007 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
71, 6sylan 579 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
8 iscusgr 29110 . . . 4 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
9 usgrupgr 28877 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
109adantr 480 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph)
1110anim1i 614 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁𝑉))
1211anim1i 614 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})))
132iscplgr 29107 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺)))
14 eldifi 4126 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝑉)
1514ad2antll 726 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣𝑉)
16 eleq1w 2815 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺)))
1716rspcv 3608 . . . . . . . . . . . 12 (𝑣𝑉 → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1815, 17syl 17 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1918ex 412 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))))
2019com23 86 . . . . . . . . 9 (𝐺 ∈ USGraph → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2113, 20sylbid 239 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2221imp 406 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))
2322impl 455 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))
242, 3, 4, 5uvtxupgrres 29100 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆)))
2512, 23, 24sylc 65 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆))
2625ralrimiva 3145 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
278, 26sylanb 580 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
28 opex 5464 . . . . 5 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
295, 28eqeltri 2828 . . . 4 𝑆 ∈ V
302, 3, 4, 5upgrres1lem2 29003 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3130eqcomi 2740 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
3231iscplgr 29107 . . . 4 (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3329, 32mp1i 13 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3427, 33mpbird 257 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplGraph)
35 iscusgr 29110 . 2 (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph))
367, 34, 35sylanbrc 582 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wnel 3045  wral 3060  {crab 3431  Vcvv 3473  cdif 3945  {csn 4628  cop 4634   I cid 5573  cres 5678  cfv 6543  Vtxcvtx 28691  Edgcedg 28742  UPGraphcupgr 28775  USGraphcusgr 28844  UnivVtxcuvtx 29077  ComplGraphccplgr 29101  ComplUSGraphccusgr 29102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-dju 9902  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-n0 12480  df-xnn0 12552  df-z 12566  df-uz 12830  df-fz 13492  df-hash 14298  df-vtx 28693  df-iedg 28694  df-edg 28743  df-uhgr 28753  df-upgr 28777  df-umgr 28778  df-uspgr 28845  df-usgr 28846  df-nbgr 29025  df-uvtx 29078  df-cplgr 29103  df-cusgr 29104
This theorem is referenced by:  cusgrsize  29146
  Copyright terms: Public domain W3C validator