MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrres Structured version   Visualization version   GIF version

Theorem cusgrres 26796
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.)
Hypotheses
Ref Expression
cusgrres.v 𝑉 = (Vtx‘𝐺)
cusgrres.e 𝐸 = (Edg‘𝐺)
cusgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
cusgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
cusgrres ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem cusgrres
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 26767 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
3 cusgrres.e . . . 4 𝐸 = (Edg‘𝐺)
4 cusgrres.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
5 cusgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
62, 3, 4, 5usgrres1 26662 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
71, 6sylan 575 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
8 iscusgr 26766 . . . 4 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
9 usgrupgr 26531 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
109adantr 474 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph)
1110anim1i 608 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁𝑉))
1211anim1i 608 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})))
132iscplgr 26763 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺)))
14 eldifi 3954 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝑉)
1514ad2antll 719 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣𝑉)
16 eleq1w 2841 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺)))
1716rspcv 3506 . . . . . . . . . . . 12 (𝑣𝑉 → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1815, 17syl 17 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1918ex 403 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))))
2019com23 86 . . . . . . . . 9 (𝐺 ∈ USGraph → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2113, 20sylbid 232 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2221imp 397 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))
2322impl 449 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))
242, 3, 4, 5uvtxupgrres 26756 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆)))
2512, 23, 24sylc 65 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆))
2625ralrimiva 3147 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
278, 26sylanb 576 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
28 opex 5164 . . . . 5 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
295, 28eqeltri 2854 . . . 4 𝑆 ∈ V
302, 3, 4, 5upgrres1lem2 26658 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3130eqcomi 2786 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
3231iscplgr 26763 . . . 4 (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3329, 32mp1i 13 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3427, 33mpbird 249 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplGraph)
35 iscusgr 26766 . 2 (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph))
367, 34, 35sylanbrc 578 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wnel 3074  wral 3089  {crab 3093  Vcvv 3397  cdif 3788  {csn 4397  cop 4403   I cid 5260  cres 5357  cfv 6135  Vtxcvtx 26344  Edgcedg 26395  UPGraphcupgr 26428  USGraphcusgr 26498  UnivVtxcuvtx 26733  ComplGraphccplgr 26757  ComplUSGraphccusgr 26758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-fz 12644  df-hash 13436  df-vtx 26346  df-iedg 26347  df-edg 26396  df-uhgr 26406  df-upgr 26430  df-umgr 26431  df-uspgr 26499  df-usgr 26500  df-nbgr 26680  df-uvtx 26734  df-cplgr 26759  df-cusgr 26760
This theorem is referenced by:  cusgrsize  26802
  Copyright terms: Public domain W3C validator