MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrres Structured version   Visualization version   GIF version

Theorem cusgrres 27230
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.)
Hypotheses
Ref Expression
cusgrres.v 𝑉 = (Vtx‘𝐺)
cusgrres.e 𝐸 = (Edg‘𝐺)
cusgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
cusgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
cusgrres ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem cusgrres
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 27201 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
3 cusgrres.e . . . 4 𝐸 = (Edg‘𝐺)
4 cusgrres.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
5 cusgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
62, 3, 4, 5usgrres1 27097 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
71, 6sylan 582 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
8 iscusgr 27200 . . . 4 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
9 usgrupgr 26967 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
109adantr 483 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph)
1110anim1i 616 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁𝑉))
1211anim1i 616 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})))
132iscplgr 27197 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺)))
14 eldifi 4103 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝑉)
1514ad2antll 727 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣𝑉)
16 eleq1w 2895 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺)))
1716rspcv 3618 . . . . . . . . . . . 12 (𝑣𝑉 → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1815, 17syl 17 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1918ex 415 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))))
2019com23 86 . . . . . . . . 9 (𝐺 ∈ USGraph → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2113, 20sylbid 242 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2221imp 409 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))
2322impl 458 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))
242, 3, 4, 5uvtxupgrres 27190 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆)))
2512, 23, 24sylc 65 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆))
2625ralrimiva 3182 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
278, 26sylanb 583 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
28 opex 5356 . . . . 5 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
295, 28eqeltri 2909 . . . 4 𝑆 ∈ V
302, 3, 4, 5upgrres1lem2 27093 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3130eqcomi 2830 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
3231iscplgr 27197 . . . 4 (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3329, 32mp1i 13 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3427, 33mpbird 259 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplGraph)
35 iscusgr 27200 . 2 (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph))
367, 34, 35sylanbrc 585 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wnel 3123  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  {csn 4567  cop 4573   I cid 5459  cres 5557  cfv 6355  Vtxcvtx 26781  Edgcedg 26832  UPGraphcupgr 26865  USGraphcusgr 26934  UnivVtxcuvtx 27167  ComplGraphccplgr 27191  ComplUSGraphccusgr 27192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-vtx 26783  df-iedg 26784  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-umgr 26868  df-uspgr 26935  df-usgr 26936  df-nbgr 27115  df-uvtx 27168  df-cplgr 27193  df-cusgr 27194
This theorem is referenced by:  cusgrsize  27236
  Copyright terms: Public domain W3C validator