| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrres | Structured version Visualization version GIF version | ||
| Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| cusgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrres.e | ⊢ 𝐸 = (Edg‘𝐺) |
| cusgrres.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
| cusgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
| Ref | Expression |
|---|---|
| cusgrres | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrusgr 29403 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 2 | cusgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | cusgrres.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | cusgrres.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 5 | cusgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
| 6 | 2, 3, 4, 5 | usgrres1 29299 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
| 7 | 1, 6 | sylan 580 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
| 8 | iscusgr 29402 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 9 | usgrupgr 29169 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph) |
| 11 | 10 | anim1i 615 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉)) |
| 12 | 11 | anim1i 615 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
| 13 | 2 | iscplgr 29399 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺))) |
| 14 | eldifi 4111 | . . . . . . . . . . . . 13 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ 𝑉) | |
| 15 | 14 | ad2antll 729 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣 ∈ 𝑉) |
| 16 | eleq1w 2818 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺))) | |
| 17 | 16 | rspcv 3602 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝑉 → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
| 18 | 15, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
| 19 | 18 | ex 412 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
| 20 | 19 | com23 86 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
| 21 | 13, 20 | sylbid 240 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
| 22 | 21 | imp 406 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))) |
| 23 | 22 | impl 455 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)) |
| 24 | 2, 3, 4, 5 | uvtxupgrres 29392 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆))) |
| 25 | 12, 23, 24 | sylc 65 | . . . . 5 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆)) |
| 26 | 25 | ralrimiva 3133 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
| 27 | 8, 26 | sylanb 581 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
| 28 | opex 5444 | . . . . 5 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
| 29 | 5, 28 | eqeltri 2831 | . . . 4 ⊢ 𝑆 ∈ V |
| 30 | 2, 3, 4, 5 | upgrres1lem2 29295 | . . . . . 6 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
| 31 | 30 | eqcomi 2745 | . . . . 5 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 32 | 31 | iscplgr 29399 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
| 33 | 29, 32 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
| 34 | 27, 33 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplGraph) |
| 35 | iscusgr 29402 | . 2 ⊢ (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph)) | |
| 36 | 7, 34, 35 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3037 ∀wral 3052 {crab 3420 Vcvv 3464 ∖ cdif 3928 {csn 4606 〈cop 4612 I cid 5552 ↾ cres 5661 ‘cfv 6536 Vtxcvtx 28980 Edgcedg 29031 UPGraphcupgr 29064 USGraphcusgr 29133 UnivVtxcuvtx 29369 ComplGraphccplgr 29393 ComplUSGraphccusgr 29394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-hash 14354 df-vtx 28982 df-iedg 28983 df-edg 29032 df-uhgr 29042 df-upgr 29066 df-umgr 29067 df-uspgr 29134 df-usgr 29135 df-nbgr 29317 df-uvtx 29370 df-cplgr 29395 df-cusgr 29396 |
| This theorem is referenced by: cusgrsize 29439 |
| Copyright terms: Public domain | W3C validator |