MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrres Structured version   Visualization version   GIF version

Theorem cusgrres 27815
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.)
Hypotheses
Ref Expression
cusgrres.v 𝑉 = (Vtx‘𝐺)
cusgrres.e 𝐸 = (Edg‘𝐺)
cusgrres.f 𝐹 = {𝑒𝐸𝑁𝑒}
cusgrres.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
cusgrres ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem cusgrres
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 27786 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
2 cusgrres.v . . . 4 𝑉 = (Vtx‘𝐺)
3 cusgrres.e . . . 4 𝐸 = (Edg‘𝐺)
4 cusgrres.f . . . 4 𝐹 = {𝑒𝐸𝑁𝑒}
5 cusgrres.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
62, 3, 4, 5usgrres1 27682 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
71, 6sylan 580 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph)
8 iscusgr 27785 . . . 4 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
9 usgrupgr 27552 . . . . . . . . 9 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
109adantr 481 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph)
1110anim1i 615 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁𝑉))
1211anim1i 615 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})))
132iscplgr 27782 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺)))
14 eldifi 4061 . . . . . . . . . . . . 13 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝑉)
1514ad2antll 726 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣𝑉)
16 eleq1w 2821 . . . . . . . . . . . . 13 (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺)))
1716rspcv 3557 . . . . . . . . . . . 12 (𝑣𝑉 → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1815, 17syl 17 . . . . . . . . . . 11 ((𝐺 ∈ USGraph ∧ (𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))
1918ex 413 . . . . . . . . . 10 (𝐺 ∈ USGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))))
2019com23 86 . . . . . . . . 9 (𝐺 ∈ USGraph → (∀𝑛𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2113, 20sylbid 239 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))))
2221imp 407 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁𝑉𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))
2322impl 456 . . . . . 6 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))
242, 3, 4, 5uvtxupgrres 27775 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆)))
2512, 23, 24sylc 65 . . . . 5 ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆))
2625ralrimiva 3103 . . . 4 (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
278, 26sylanb 581 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))
28 opex 5379 . . . . 5 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
295, 28eqeltri 2835 . . . 4 𝑆 ∈ V
302, 3, 4, 5upgrres1lem2 27678 . . . . . 6 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
3130eqcomi 2747 . . . . 5 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
3231iscplgr 27782 . . . 4 (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3329, 32mp1i 13 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)))
3427, 33mpbird 256 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplGraph)
35 iscusgr 27785 . 2 (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph))
367, 34, 35sylanbrc 583 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → 𝑆 ∈ ComplUSGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wnel 3049  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  {csn 4561  cop 4567   I cid 5488  cres 5591  cfv 6433  Vtxcvtx 27366  Edgcedg 27417  UPGraphcupgr 27450  USGraphcusgr 27519  UnivVtxcuvtx 27752  ComplGraphccplgr 27776  ComplUSGraphccusgr 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-nbgr 27700  df-uvtx 27753  df-cplgr 27778  df-cusgr 27779
This theorem is referenced by:  cusgrsize  27821
  Copyright terms: Public domain W3C validator