Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrres | Structured version Visualization version GIF version |
Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) |
Ref | Expression |
---|---|
cusgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrres.e | ⊢ 𝐸 = (Edg‘𝐺) |
cusgrres.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
cusgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
cusgrres | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrusgr 27767 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
2 | cusgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | cusgrres.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | cusgrres.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
5 | cusgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
6 | 2, 3, 4, 5 | usgrres1 27663 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
7 | 1, 6 | sylan 579 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) |
8 | iscusgr 27766 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
9 | usgrupgr 27533 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph) |
11 | 10 | anim1i 614 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉)) |
12 | 11 | anim1i 614 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) |
13 | 2 | iscplgr 27763 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺))) |
14 | eldifi 4065 | . . . . . . . . . . . . 13 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ 𝑉) | |
15 | 14 | ad2antll 725 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣 ∈ 𝑉) |
16 | eleq1w 2822 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺))) | |
17 | 16 | rspcv 3555 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝑉 → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
18 | 15, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) |
19 | 18 | ex 412 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
20 | 19 | com23 86 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
21 | 13, 20 | sylbid 239 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) |
22 | 21 | imp 406 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))) |
23 | 22 | impl 455 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)) |
24 | 2, 3, 4, 5 | uvtxupgrres 27756 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆))) |
25 | 12, 23, 24 | sylc 65 | . . . . 5 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆)) |
26 | 25 | ralrimiva 3109 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
27 | 8, 26 | sylanb 580 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) |
28 | opex 5381 | . . . . 5 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
29 | 5, 28 | eqeltri 2836 | . . . 4 ⊢ 𝑆 ∈ V |
30 | 2, 3, 4, 5 | upgrres1lem2 27659 | . . . . . 6 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
31 | 30 | eqcomi 2748 | . . . . 5 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
32 | 31 | iscplgr 27763 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
33 | 29, 32 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) |
34 | 27, 33 | mpbird 256 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplGraph) |
35 | iscusgr 27766 | . 2 ⊢ (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph)) | |
36 | 7, 34, 35 | sylanbrc 582 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∉ wnel 3050 ∀wral 3065 {crab 3069 Vcvv 3430 ∖ cdif 3888 {csn 4566 〈cop 4572 I cid 5487 ↾ cres 5590 ‘cfv 6430 Vtxcvtx 27347 Edgcedg 27398 UPGraphcupgr 27431 USGraphcusgr 27500 UnivVtxcuvtx 27733 ComplGraphccplgr 27757 ComplUSGraphccusgr 27758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 df-vtx 27349 df-iedg 27350 df-edg 27399 df-uhgr 27409 df-upgr 27433 df-umgr 27434 df-uspgr 27501 df-usgr 27502 df-nbgr 27681 df-uvtx 27734 df-cplgr 27759 df-cusgr 27760 |
This theorem is referenced by: cusgrsize 27802 |
Copyright terms: Public domain | W3C validator |