|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cusgrres | Structured version Visualization version GIF version | ||
| Description: Restricting a complete simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| cusgrres.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| cusgrres.e | ⊢ 𝐸 = (Edg‘𝐺) | 
| cusgrres.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | 
| cusgrres.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | 
| Ref | Expression | 
|---|---|
| cusgrres | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cusgrusgr 29437 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 2 | cusgrres.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | cusgrres.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 4 | cusgrres.f | . . . 4 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
| 5 | cusgrres.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
| 6 | 2, 3, 4, 5 | usgrres1 29333 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) | 
| 7 | 1, 6 | sylan 580 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph) | 
| 8 | iscusgr 29436 | . . . 4 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 9 | usgrupgr 29203 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph) | |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → 𝐺 ∈ UPGraph) | 
| 11 | 10 | anim1i 615 | . . . . . . 7 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉)) | 
| 12 | 11 | anim1i 615 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) | 
| 13 | 2 | iscplgr 29433 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺))) | 
| 14 | eldifi 4130 | . . . . . . . . . . . . 13 ⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ∈ 𝑉) | |
| 15 | 14 | ad2antll 729 | . . . . . . . . . . . 12 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → 𝑣 ∈ 𝑉) | 
| 16 | eleq1w 2823 | . . . . . . . . . . . . 13 ⊢ (𝑛 = 𝑣 → (𝑛 ∈ (UnivVtx‘𝐺) ↔ 𝑣 ∈ (UnivVtx‘𝐺))) | |
| 17 | 16 | rspcv 3617 | . . . . . . . . . . . 12 ⊢ (𝑣 ∈ 𝑉 → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) | 
| 18 | 15, 17 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝐺 ∈ USGraph ∧ (𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁}))) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺))) | 
| 19 | 18 | ex 412 | . . . . . . . . . 10 ⊢ (𝐺 ∈ USGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝐺)))) | 
| 20 | 19 | com23 86 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (∀𝑛 ∈ 𝑉 𝑛 ∈ (UnivVtx‘𝐺) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) | 
| 21 | 13, 20 | sylbid 240 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)))) | 
| 22 | 21 | imp 406 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) → ((𝑁 ∈ 𝑉 ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺))) | 
| 23 | 22 | impl 455 | . . . . . 6 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝐺)) | 
| 24 | 2, 3, 4, 5 | uvtxupgrres 29426 | . . . . . 6 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (𝑣 ∈ (UnivVtx‘𝐺) → 𝑣 ∈ (UnivVtx‘𝑆))) | 
| 25 | 12, 23, 24 | sylc 65 | . . . . 5 ⊢ ((((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → 𝑣 ∈ (UnivVtx‘𝑆)) | 
| 26 | 25 | ralrimiva 3145 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) | 
| 27 | 8, 26 | sylanb 581 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆)) | 
| 28 | opex 5468 | . . . . 5 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
| 29 | 5, 28 | eqeltri 2836 | . . . 4 ⊢ 𝑆 ∈ V | 
| 30 | 2, 3, 4, 5 | upgrres1lem2 29329 | . . . . . 6 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) | 
| 31 | 30 | eqcomi 2745 | . . . . 5 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) | 
| 32 | 31 | iscplgr 29433 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) | 
| 33 | 29, 32 | mp1i 13 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ ComplGraph ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})𝑣 ∈ (UnivVtx‘𝑆))) | 
| 34 | 27, 33 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplGraph) | 
| 35 | iscusgr 29436 | . 2 ⊢ (𝑆 ∈ ComplUSGraph ↔ (𝑆 ∈ USGraph ∧ 𝑆 ∈ ComplGraph)) | |
| 36 | 7, 34, 35 | sylanbrc 583 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ ComplUSGraph) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∉ wnel 3045 ∀wral 3060 {crab 3435 Vcvv 3479 ∖ cdif 3947 {csn 4625 〈cop 4631 I cid 5576 ↾ cres 5686 ‘cfv 6560 Vtxcvtx 29014 Edgcedg 29065 UPGraphcupgr 29098 USGraphcusgr 29167 UnivVtxcuvtx 29403 ComplGraphccplgr 29427 ComplUSGraphccusgr 29428 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-fz 13549 df-hash 14371 df-vtx 29016 df-iedg 29017 df-edg 29066 df-uhgr 29076 df-upgr 29100 df-umgr 29101 df-uspgr 29168 df-usgr 29169 df-nbgr 29351 df-uvtx 29404 df-cplgr 29429 df-cusgr 29430 | 
| This theorem is referenced by: cusgrsize 29473 | 
| Copyright terms: Public domain | W3C validator |