![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem19 | Structured version Visualization version GIF version |
Description: Lemma for dath 36350. Show that a second dummy atom 𝑑 exists outside of the 𝑌 and 𝑍 planes (when those planes are equal). (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalemc.l | ⊢ ≤ = (le‘𝐾) |
dalemc.j | ⊢ ∨ = (join‘𝐾) |
dalemc.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem19.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem19.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem19.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
Ref | Expression |
---|---|
dalem19 | ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | 1 | dalemkehl 36237 | . . 3 ⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 2 | ad3antrrr 718 | . 2 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → 𝐾 ∈ HL) |
4 | dalemc.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | dalemc.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
6 | dalemc.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | dalem19.o | . . . 4 ⊢ 𝑂 = (LPlanes‘𝐾) | |
8 | dalem19.y | . . . 4 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
9 | 1, 4, 5, 6, 7, 8 | dalemcea 36274 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
10 | 9 | ad3antrrr 718 | . 2 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → 𝐶 ∈ 𝐴) |
11 | simplr 757 | . 2 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → 𝑐 ∈ 𝐴) | |
12 | 1, 7 | dalemyeb 36263 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
13 | 12 | ad3antrrr 718 | . 2 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → 𝑌 ∈ (Base‘𝐾)) |
14 | dalem19.z | . . . 4 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
15 | 1, 4, 5, 6, 7, 8, 14 | dalem17 36294 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍) → 𝐶 ≤ 𝑌) |
16 | 15 | ad2antrr 714 | . 2 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → 𝐶 ≤ 𝑌) |
17 | simpr 477 | . 2 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → ¬ 𝑐 ≤ 𝑌) | |
18 | eqid 2773 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
19 | 18, 4, 5, 6 | atbtwnex 36062 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑌 ∈ (Base‘𝐾) ∧ 𝐶 ≤ 𝑌 ∧ ¬ 𝑐 ≤ 𝑌)) → ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
20 | 3, 10, 11, 13, 16, 17, 19 | syl33anc 1366 | 1 ⊢ ((((𝜑 ∧ 𝑌 = 𝑍) ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌) → ∃𝑑 ∈ 𝐴 (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ≠ wne 2962 ∃wrex 3084 class class class wbr 4926 ‘cfv 6186 (class class class)co 6975 Basecbs 16338 lecple 16427 joincjn 17425 Atomscatm 35877 HLchlt 35964 LPlanesclpl 36106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-reu 3090 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-proset 17409 df-poset 17427 df-plt 17439 df-lub 17455 df-glb 17456 df-join 17457 df-meet 17458 df-p0 17520 df-lat 17527 df-clat 17589 df-oposet 35790 df-ol 35792 df-oml 35793 df-covers 35880 df-ats 35881 df-atl 35912 df-cvlat 35936 df-hlat 35965 df-llines 36112 df-lplanes 36113 |
This theorem is referenced by: dalem20 36307 |
Copyright terms: Public domain | W3C validator |