![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem19 | Structured version Visualization version GIF version |
Description: Lemma for dath 38910. Show that a second dummy atom π exists outside of the π and π planes (when those planes are equal). (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
dalema.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalemc.l | β’ β€ = (leβπΎ) |
dalemc.j | β’ β¨ = (joinβπΎ) |
dalemc.a | β’ π΄ = (AtomsβπΎ) |
dalem19.o | β’ π = (LPlanesβπΎ) |
dalem19.y | β’ π = ((π β¨ π) β¨ π ) |
dalem19.z | β’ π = ((π β¨ π) β¨ π) |
Ref | Expression |
---|---|
dalem19 | β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β βπ β π΄ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | . . . 4 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
2 | 1 | dalemkehl 38797 | . . 3 β’ (π β πΎ β HL) |
3 | 2 | ad3antrrr 726 | . 2 β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β πΎ β HL) |
4 | dalemc.l | . . . 4 β’ β€ = (leβπΎ) | |
5 | dalemc.j | . . . 4 β’ β¨ = (joinβπΎ) | |
6 | dalemc.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
7 | dalem19.o | . . . 4 β’ π = (LPlanesβπΎ) | |
8 | dalem19.y | . . . 4 β’ π = ((π β¨ π) β¨ π ) | |
9 | 1, 4, 5, 6, 7, 8 | dalemcea 38834 | . . 3 β’ (π β πΆ β π΄) |
10 | 9 | ad3antrrr 726 | . 2 β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β πΆ β π΄) |
11 | simplr 765 | . 2 β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β π β π΄) | |
12 | 1, 7 | dalemyeb 38823 | . . 3 β’ (π β π β (BaseβπΎ)) |
13 | 12 | ad3antrrr 726 | . 2 β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β π β (BaseβπΎ)) |
14 | dalem19.z | . . . 4 β’ π = ((π β¨ π) β¨ π) | |
15 | 1, 4, 5, 6, 7, 8, 14 | dalem17 38854 | . . 3 β’ ((π β§ π = π) β πΆ β€ π) |
16 | 15 | ad2antrr 722 | . 2 β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β πΆ β€ π) |
17 | simpr 483 | . 2 β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β Β¬ π β€ π) | |
18 | eqid 2730 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
19 | 18, 4, 5, 6 | atbtwnex 38622 | . 2 β’ (((πΎ β HL β§ πΆ β π΄ β§ π β π΄) β§ (π β (BaseβπΎ) β§ πΆ β€ π β§ Β¬ π β€ π)) β βπ β π΄ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π))) |
20 | 3, 10, 11, 13, 16, 17, 19 | syl33anc 1383 | 1 β’ ((((π β§ π = π) β§ π β π΄) β§ Β¬ π β€ π) β βπ β π΄ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 βwrex 3068 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 Atomscatm 38436 HLchlt 38523 LPlanesclpl 38666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-llines 38672 df-lplanes 38673 |
This theorem is referenced by: dalem20 38867 |
Copyright terms: Public domain | W3C validator |