![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalem28 | Structured version Visualization version GIF version |
Description: Lemma for dath 39693. Lemma dalem27 39656 expressed differently. (Contributed by NM, 4-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalem23.m | ⊢ ∧ = (meet‘𝐾) |
dalem23.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dalem23.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
dalem23.z | ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
dalem23.g | ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
Ref | Expression |
---|---|
dalem28 | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ≤ (𝐺 ∨ 𝑐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
2 | dalem.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | dalem.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | dalem.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | dalem.ps | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
6 | dalem23.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
7 | dalem23.o | . . 3 ⊢ 𝑂 = (LPlanes‘𝐾) | |
8 | dalem23.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
9 | dalem23.z | . . 3 ⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
10 | dalem23.g | . . 3 ⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dalem27 39656 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) |
12 | 1 | dalemkehl 39580 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ HL) |
13 | 12 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
14 | 5 | dalemccea 39640 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
15 | 14 | 3ad2ant3 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
16 | 1 | dalempea 39583 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ∈ 𝐴) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dalem23 39653 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dalem25 39655 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≠ 𝐺) |
20 | 2, 3, 4 | hlatexch1 39352 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑐 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴) ∧ 𝑐 ≠ 𝐺) → (𝑐 ≤ (𝐺 ∨ 𝑃) → 𝑃 ≤ (𝐺 ∨ 𝑐))) |
21 | 13, 15, 17, 18, 19, 20 | syl131anc 1383 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ≤ (𝐺 ∨ 𝑃) → 𝑃 ≤ (𝐺 ∨ 𝑐))) |
22 | 11, 21 | mpd 15 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑃 ≤ (𝐺 ∨ 𝑐)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 meetcmee 18382 Atomscatm 39219 HLchlt 39306 LPlanesclpl 39449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 |
This theorem is referenced by: dalem33 39662 dalem38 39667 dalem44 39673 |
Copyright terms: Public domain | W3C validator |