Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem51 Structured version   Visualization version   GIF version

Theorem dalem51 37019
Description: Lemma for dath 37032. Construct the condition 𝜑 with 𝑐, 𝐺𝐻𝐼, and 𝑌 in place of 𝐶, 𝑌, and 𝑍 respectively. This lets us reuse the special case of Desargues's theorem where 𝑌𝑍, to eventually prove the case where 𝑌 = 𝑍. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem51 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))

Proof of Theorem dalem51
StepHypRef Expression
1 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 36919 . . . . . 6 (𝜑𝐾 ∈ HL)
323ad2ant1 1130 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
54dalemccea 36979 . . . . . 6 (𝜓𝑐𝐴)
653ad2ant3 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
73, 6jca 515 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝐾 ∈ HL ∧ 𝑐𝐴))
8 dalem.l . . . . . 6 = (le‘𝐾)
9 dalem.j . . . . . 6 = (join‘𝐾)
10 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 dalem44.m . . . . . 6 = (meet‘𝐾)
12 dalem44.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
13 dalem44.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
14 dalem44.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
15 dalem44.g . . . . . 6 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
161, 8, 9, 10, 4, 11, 12, 13, 14, 15dalem23 36992 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
17 dalem44.h . . . . . 6 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
181, 8, 9, 10, 4, 11, 12, 13, 14, 17dalem29 36997 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
19 dalem44.i . . . . . 6 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
201, 8, 9, 10, 4, 11, 12, 13, 14, 19dalem34 37002 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2116, 18, 203jca 1125 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝐺𝐴𝐻𝐴𝐼𝐴))
221dalempea 36922 . . . . . 6 (𝜑𝑃𝐴)
231dalemqea 36923 . . . . . 6 (𝜑𝑄𝐴)
241dalemrea 36924 . . . . . 6 (𝜑𝑅𝐴)
2522, 23, 243jca 1125 . . . . 5 (𝜑 → (𝑃𝐴𝑄𝐴𝑅𝐴))
26253ad2ant1 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃𝐴𝑄𝐴𝑅𝐴))
277, 21, 263jca 1125 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)))
281, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem42 37010 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
291dalemyeo 36928 . . . . 5 (𝜑𝑌𝑂)
30293ad2ant1 1130 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
3128, 30jca 515 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂))
321, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem45 37013 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐺 𝐻))
331, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem46 37014 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐻 𝐼))
341, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem47 37015 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 (𝐼 𝐺))
3532, 33, 343jca 1125 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)))
361, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem48 37016 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 (𝑃 𝑄))
371, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem49 37017 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 (𝑄 𝑅))
381, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem50 37018 . . . . . 6 ((𝜑𝜓) → ¬ 𝑐 (𝑅 𝑃))
3936, 37, 383jca 1125 . . . . 5 ((𝜑𝜓) → (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)))
40393adant2 1128 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)))
411, 8, 9, 10, 4, 11, 12, 13, 14, 15dalem27 36995 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐺 𝑃))
421, 8, 9, 10, 4, 11, 12, 13, 14, 17dalem32 37000 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐻 𝑄))
431, 8, 9, 10, 4, 11, 12, 13, 14, 19dalem36 37004 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 (𝐼 𝑅))
4441, 42, 433jca 1125 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))
4535, 40, 443jca 1125 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅))))
4627, 31, 453jca 1125 . 2 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
471, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem43 37011 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
4846, 47jca 515 1 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Atomscatm 36559  HLchlt 36646  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796
This theorem is referenced by:  dalem53  37021  dalem54  37022
  Copyright terms: Public domain W3C validator