Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem51 Structured version   Visualization version   GIF version

Theorem dalem51 38897
Description: Lemma for dath 38910. Construct the condition πœ‘ with 𝑐, 𝐺𝐻𝐼, and π‘Œ in place of 𝐢, π‘Œ, and 𝑍 respectively. This lets us reuse the special case of Desargues's theorem where π‘Œ β‰  𝑍, to eventually prove the case where π‘Œ = 𝑍. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
dalem.l ≀ = (leβ€˜πΎ)
dalem.j ∨ = (joinβ€˜πΎ)
dalem.a 𝐴 = (Atomsβ€˜πΎ)
dalem.ps (πœ“ ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ Β¬ 𝑐 ≀ π‘Œ ∧ (𝑑 β‰  𝑐 ∧ Β¬ 𝑑 ≀ π‘Œ ∧ 𝐢 ≀ (𝑐 ∨ 𝑑))))
dalem44.m ∧ = (meetβ€˜πΎ)
dalem44.o 𝑂 = (LPlanesβ€˜πΎ)
dalem44.y π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
dalem44.z 𝑍 = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
dalem44.g 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆))
dalem44.h 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇))
dalem44.i 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ π‘ˆ))
Assertion
Ref Expression
dalem51 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ π‘Œ ∈ 𝑂) ∧ ((Β¬ 𝑐 ≀ (𝐺 ∨ 𝐻) ∧ Β¬ 𝑐 ≀ (𝐻 ∨ 𝐼) ∧ Β¬ 𝑐 ≀ (𝐼 ∨ 𝐺)) ∧ (Β¬ 𝑐 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑐 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑐 ≀ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≀ (𝐺 ∨ 𝑃) ∧ 𝑐 ≀ (𝐻 ∨ 𝑄) ∧ 𝑐 ≀ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) β‰  π‘Œ))

Proof of Theorem dalem51
StepHypRef Expression
1 dalem.ph . . . . . . 7 (πœ‘ ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (π‘Œ ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
21dalemkehl 38797 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ HL)
323ad2ant1 1131 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐾 ∈ HL)
4 dalem.ps . . . . . . 7 (πœ“ ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ Β¬ 𝑐 ≀ π‘Œ ∧ (𝑑 β‰  𝑐 ∧ Β¬ 𝑑 ≀ π‘Œ ∧ 𝐢 ≀ (𝑐 ∨ 𝑑))))
54dalemccea 38857 . . . . . 6 (πœ“ β†’ 𝑐 ∈ 𝐴)
653ad2ant3 1133 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝑐 ∈ 𝐴)
73, 6jca 510 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴))
8 dalem.l . . . . . 6 ≀ = (leβ€˜πΎ)
9 dalem.j . . . . . 6 ∨ = (joinβ€˜πΎ)
10 dalem.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
11 dalem44.m . . . . . 6 ∧ = (meetβ€˜πΎ)
12 dalem44.o . . . . . 6 𝑂 = (LPlanesβ€˜πΎ)
13 dalem44.y . . . . . 6 π‘Œ = ((𝑃 ∨ 𝑄) ∨ 𝑅)
14 dalem44.z . . . . . 6 𝑍 = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
15 dalem44.g . . . . . 6 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆))
161, 8, 9, 10, 4, 11, 12, 13, 14, 15dalem23 38870 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐺 ∈ 𝐴)
17 dalem44.h . . . . . 6 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇))
181, 8, 9, 10, 4, 11, 12, 13, 14, 17dalem29 38875 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐻 ∈ 𝐴)
19 dalem44.i . . . . . 6 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ π‘ˆ))
201, 8, 9, 10, 4, 11, 12, 13, 14, 19dalem34 38880 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝐼 ∈ 𝐴)
2116, 18, 203jca 1126 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴))
221dalempea 38800 . . . . . 6 (πœ‘ β†’ 𝑃 ∈ 𝐴)
231dalemqea 38801 . . . . . 6 (πœ‘ β†’ 𝑄 ∈ 𝐴)
241dalemrea 38802 . . . . . 6 (πœ‘ β†’ 𝑅 ∈ 𝐴)
2522, 23, 243jca 1126 . . . . 5 (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))
26253ad2ant1 1131 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))
277, 21, 263jca 1126 . . 3 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)))
281, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem42 38888 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂)
291dalemyeo 38806 . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑂)
30293ad2ant1 1131 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ π‘Œ ∈ 𝑂)
3128, 30jca 510 . . 3 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ π‘Œ ∈ 𝑂))
321, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem45 38891 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ Β¬ 𝑐 ≀ (𝐺 ∨ 𝐻))
331, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem46 38892 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ Β¬ 𝑐 ≀ (𝐻 ∨ 𝐼))
341, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem47 38893 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ Β¬ 𝑐 ≀ (𝐼 ∨ 𝐺))
3532, 33, 343jca 1126 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (Β¬ 𝑐 ≀ (𝐺 ∨ 𝐻) ∧ Β¬ 𝑐 ≀ (𝐻 ∨ 𝐼) ∧ Β¬ 𝑐 ≀ (𝐼 ∨ 𝐺)))
361, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem48 38894 . . . . . 6 ((πœ‘ ∧ πœ“) β†’ Β¬ 𝑐 ≀ (𝑃 ∨ 𝑄))
371, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem49 38895 . . . . . 6 ((πœ‘ ∧ πœ“) β†’ Β¬ 𝑐 ≀ (𝑄 ∨ 𝑅))
381, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem50 38896 . . . . . 6 ((πœ‘ ∧ πœ“) β†’ Β¬ 𝑐 ≀ (𝑅 ∨ 𝑃))
3936, 37, 383jca 1126 . . . . 5 ((πœ‘ ∧ πœ“) β†’ (Β¬ 𝑐 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑐 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑐 ≀ (𝑅 ∨ 𝑃)))
40393adant2 1129 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (Β¬ 𝑐 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑐 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑐 ≀ (𝑅 ∨ 𝑃)))
411, 8, 9, 10, 4, 11, 12, 13, 14, 15dalem27 38873 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝑐 ≀ (𝐺 ∨ 𝑃))
421, 8, 9, 10, 4, 11, 12, 13, 14, 17dalem32 38878 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝑐 ≀ (𝐻 ∨ 𝑄))
431, 8, 9, 10, 4, 11, 12, 13, 14, 19dalem36 38882 . . . . 5 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ 𝑐 ≀ (𝐼 ∨ 𝑅))
4441, 42, 433jca 1126 . . . 4 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (𝑐 ≀ (𝐺 ∨ 𝑃) ∧ 𝑐 ≀ (𝐻 ∨ 𝑄) ∧ 𝑐 ≀ (𝐼 ∨ 𝑅)))
4535, 40, 443jca 1126 . . 3 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((Β¬ 𝑐 ≀ (𝐺 ∨ 𝐻) ∧ Β¬ 𝑐 ≀ (𝐻 ∨ 𝐼) ∧ Β¬ 𝑐 ≀ (𝐼 ∨ 𝐺)) ∧ (Β¬ 𝑐 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑐 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑐 ≀ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≀ (𝐺 ∨ 𝑃) ∧ 𝑐 ≀ (𝐻 ∨ 𝑄) ∧ 𝑐 ≀ (𝐼 ∨ 𝑅))))
4627, 31, 453jca 1126 . 2 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ (((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ π‘Œ ∈ 𝑂) ∧ ((Β¬ 𝑐 ≀ (𝐺 ∨ 𝐻) ∧ Β¬ 𝑐 ≀ (𝐻 ∨ 𝐼) ∧ Β¬ 𝑐 ≀ (𝐼 ∨ 𝐺)) ∧ (Β¬ 𝑐 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑐 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑐 ≀ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≀ (𝐺 ∨ 𝑃) ∧ 𝑐 ≀ (𝐻 ∨ 𝑄) ∧ 𝑐 ≀ (𝐼 ∨ 𝑅)))))
471, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19dalem43 38889 . 2 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((𝐺 ∨ 𝐻) ∨ 𝐼) β‰  π‘Œ)
4846, 47jca 510 1 ((πœ‘ ∧ π‘Œ = 𝑍 ∧ πœ“) β†’ ((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ π‘Œ ∈ 𝑂) ∧ ((Β¬ 𝑐 ≀ (𝐺 ∨ 𝐻) ∧ Β¬ 𝑐 ≀ (𝐻 ∨ 𝐼) ∧ Β¬ 𝑐 ≀ (𝐼 ∨ 𝐺)) ∧ (Β¬ 𝑐 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑐 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑐 ≀ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≀ (𝐺 ∨ 𝑃) ∧ 𝑐 ≀ (𝐻 ∨ 𝑄) ∧ 𝑐 ≀ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) β‰  π‘Œ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  HLchlt 38523  LPlanesclpl 38666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674
This theorem is referenced by:  dalem53  38899  dalem54  38900
  Copyright terms: Public domain W3C validator