Proof of Theorem dalem51
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dalem.ph | . . . . . . 7
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | 
| 2 | 1 | dalemkehl 39625 | . . . . . 6
⊢ (𝜑 → 𝐾 ∈ HL) | 
| 3 | 2 | 3ad2ant1 1134 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) | 
| 4 |  | dalem.ps | . . . . . . 7
⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | 
| 5 | 4 | dalemccea 39685 | . . . . . 6
⊢ (𝜓 → 𝑐 ∈ 𝐴) | 
| 6 | 5 | 3ad2ant3 1136 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) | 
| 7 | 3, 6 | jca 511 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴)) | 
| 8 |  | dalem.l | . . . . . 6
⊢  ≤ =
(le‘𝐾) | 
| 9 |  | dalem.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 10 |  | dalem.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 11 |  | dalem44.m | . . . . . 6
⊢  ∧ =
(meet‘𝐾) | 
| 12 |  | dalem44.o | . . . . . 6
⊢ 𝑂 = (LPlanes‘𝐾) | 
| 13 |  | dalem44.y | . . . . . 6
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | 
| 14 |  | dalem44.z | . . . . . 6
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) | 
| 15 |  | dalem44.g | . . . . . 6
⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) | 
| 16 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15 | dalem23 39698 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) | 
| 17 |  | dalem44.h | . . . . . 6
⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) | 
| 18 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 17 | dalem29 39703 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ 𝐴) | 
| 19 |  | dalem44.i | . . . . . 6
⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) | 
| 20 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 19 | dalem34 39708 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ 𝐴) | 
| 21 | 16, 18, 20 | 3jca 1129 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴)) | 
| 22 | 1 | dalempea 39628 | . . . . . 6
⊢ (𝜑 → 𝑃 ∈ 𝐴) | 
| 23 | 1 | dalemqea 39629 | . . . . . 6
⊢ (𝜑 → 𝑄 ∈ 𝐴) | 
| 24 | 1 | dalemrea 39630 | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝐴) | 
| 25 | 22, 23, 24 | 3jca 1129 | . . . . 5
⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) | 
| 26 | 25 | 3ad2ant1 1134 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) | 
| 27 | 7, 21, 26 | 3jca 1129 | . . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))) | 
| 28 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem42 39716 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂) | 
| 29 | 1 | dalemyeo 39634 | . . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑂) | 
| 30 | 29 | 3ad2ant1 1134 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 ∈ 𝑂) | 
| 31 | 28, 30 | jca 511 | . . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂)) | 
| 32 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem45 39719 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐺 ∨ 𝐻)) | 
| 33 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem46 39720 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐻 ∨ 𝐼)) | 
| 34 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem47 39721 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) | 
| 35 | 32, 33, 34 | 3jca 1129 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺))) | 
| 36 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem48 39722 | . . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑃 ∨ 𝑄)) | 
| 37 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem49 39723 | . . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑄 ∨ 𝑅)) | 
| 38 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem50 39724 | . . . . . 6
⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) | 
| 39 | 36, 37, 38 | 3jca 1129 | . . . . 5
⊢ ((𝜑 ∧ 𝜓) → (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃))) | 
| 40 | 39 | 3adant2 1132 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃))) | 
| 41 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15 | dalem27 39701 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐺 ∨ 𝑃)) | 
| 42 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 17 | dalem32 39706 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐻 ∨ 𝑄)) | 
| 43 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 19 | dalem36 39710 | . . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≤ (𝐼 ∨ 𝑅)) | 
| 44 | 41, 42, 43 | 3jca 1129 | . . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅))) | 
| 45 | 35, 40, 44 | 3jca 1129 | . . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) | 
| 46 | 27, 31, 45 | 3jca 1129 | . 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅))))) | 
| 47 | 1, 8, 9, 10, 4, 11, 12, 13, 14, 15, 17, 19 | dalem43 39717 | . 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌) | 
| 48 | 46, 47 | jca 511 | 1
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌)) |