Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem44 Structured version   Visualization version   GIF version

Theorem dalem44 37657
Description: Lemma for dath 37677. Dummy center of perspectivity 𝑐 lies outside of plane 𝐺𝐻𝐼. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem44 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))

Proof of Theorem dalem44
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem44.m . . . 4 = (meet‘𝐾)
7 dalem44.o . . . 4 𝑂 = (LPlanes‘𝐾)
8 dalem44.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem44.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem44.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem44.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem44.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem43 37656 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
1413necomd 2998 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ≠ ((𝐺 𝐻) 𝐼))
151dalemkelat 37565 . . . . . . 7 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1131 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
175, 4dalemcceb 37630 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
18173ad2ant3 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem42 37655 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
20 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 7lplnbase 37475 . . . . . . 7 (((𝐺 𝐻) 𝐼) ∈ 𝑂 → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2320, 2, 3latleeqj1 18084 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾)) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
2416, 18, 22, 23syl3anc 1369 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem28 37641 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
261dalemkehl 37564 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
27263ad2ant1 1131 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
285dalemccea 37624 . . . . . . . . . . . . . 14 (𝜓𝑐𝐴)
29283ad2ant3 1133 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 37637 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
313, 4hlatjcom 37309 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) = (𝐺 𝑐))
3227, 29, 30, 31syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) = (𝐺 𝑐))
3325, 32breqtrrd 5098 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝑐 𝐺))
341, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem33 37646 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
351, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 37642 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
363, 4hlatjcom 37309 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) = (𝐻 𝑐))
3727, 29, 35, 36syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) = (𝐻 𝑐))
3834, 37breqtrrd 5098 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝑐 𝐻))
391, 4dalempeb 37580 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (Base‘𝐾))
40393ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
4120, 3, 4hlatjcl 37308 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) ∈ (Base‘𝐾))
4227, 29, 30, 41syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) ∈ (Base‘𝐾))
431, 4dalemqeb 37581 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (Base‘𝐾))
44433ad2ant1 1131 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
4520, 3, 4hlatjcl 37308 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) ∈ (Base‘𝐾))
4627, 29, 35, 45syl3anc 1369 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) ∈ (Base‘𝐾))
4720, 2, 3latjlej12 18088 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑐 𝐺) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑐 𝐻) ∈ (Base‘𝐾))) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4816, 40, 42, 44, 46, 47syl122anc 1377 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4933, 38, 48mp2and 695 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻)))
5020, 4atbase 37230 . . . . . . . . . . . 12 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
5130, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
5220, 4atbase 37230 . . . . . . . . . . . 12 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
5335, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
5420, 3latjjdi 18124 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾))) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5516, 18, 51, 53, 54syl13anc 1370 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5649, 55breqtrrd 5098 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) (𝑐 (𝐺 𝐻)))
571, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem37 37650 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
581, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem34 37647 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
593, 4hlatjcom 37309 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) = (𝐼 𝑐))
6027, 29, 58, 59syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) = (𝐼 𝑐))
6157, 60breqtrrd 5098 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝑐 𝐼))
621, 3, 4dalempjqeb 37586 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
63623ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6420, 3, 4hlatjcl 37308 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
6527, 30, 35, 64syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
6620, 3latjcl 18072 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾)) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
6716, 18, 65, 66syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
681, 4dalemreb 37582 . . . . . . . . . . 11 (𝜑𝑅 ∈ (Base‘𝐾))
69683ad2ant1 1131 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
7020, 3, 4hlatjcl 37308 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) ∈ (Base‘𝐾))
7127, 29, 58, 70syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) ∈ (Base‘𝐾))
7220, 2, 3latjlej12 18088 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑐 𝐼) ∈ (Base‘𝐾))) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7316, 63, 67, 69, 71, 72syl122anc 1377 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7456, 61, 73mp2and 695 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7520, 4atbase 37230 . . . . . . . . . 10 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
7658, 75syl 17 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
7720, 3latjjdi 18124 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾))) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7816, 18, 65, 76, 77syl13anc 1370 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7974, 78breqtrrd 5098 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (𝑐 ((𝐺 𝐻) 𝐼)))
808, 79eqbrtrid 5105 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (𝑐 ((𝐺 𝐻) 𝐼)))
81 breq2 5074 . . . . . 6 ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → (𝑌 (𝑐 ((𝐺 𝐻) 𝐼)) ↔ 𝑌 ((𝐺 𝐻) 𝐼)))
8280, 81syl5ibcom 244 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
8324, 82sylbid 239 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
841dalemyeo 37573 . . . . . 6 (𝜑𝑌𝑂)
85843ad2ant1 1131 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
862, 7lplncmp 37503 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑂 ∧ ((𝐺 𝐻) 𝐼) ∈ 𝑂) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8727, 85, 19, 86syl3anc 1369 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8883, 87sylibd 238 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 = ((𝐺 𝐻) 𝐼)))
8988necon3ad 2955 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ≠ ((𝐺 𝐻) 𝐼) → ¬ 𝑐 ((𝐺 𝐻) 𝐼)))
9014, 89mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  HLchlt 37291  LPlanesclpl 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441
This theorem is referenced by:  dalem45  37658
  Copyright terms: Public domain W3C validator