Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem44 Structured version   Visualization version   GIF version

Theorem dalem44 39703
Description: Lemma for dath 39723. Dummy center of perspectivity 𝑐 lies outside of plane 𝐺𝐻𝐼. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem44 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))

Proof of Theorem dalem44
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem44.m . . . 4 = (meet‘𝐾)
7 dalem44.o . . . 4 𝑂 = (LPlanes‘𝐾)
8 dalem44.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem44.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem44.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem44.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem44.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem43 39702 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
1413necomd 2980 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ≠ ((𝐺 𝐻) 𝐼))
151dalemkelat 39611 . . . . . . 7 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
175, 4dalemcceb 39676 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
18173ad2ant3 1135 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem42 39701 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
20 eqid 2729 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 7lplnbase 39521 . . . . . . 7 (((𝐺 𝐻) 𝐼) ∈ 𝑂 → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2320, 2, 3latleeqj1 18392 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾)) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
2416, 18, 22, 23syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem28 39687 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
261dalemkehl 39610 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
27263ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
285dalemccea 39670 . . . . . . . . . . . . . 14 (𝜓𝑐𝐴)
29283ad2ant3 1135 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 39683 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
313, 4hlatjcom 39354 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) = (𝐺 𝑐))
3227, 29, 30, 31syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) = (𝐺 𝑐))
3325, 32breqtrrd 5130 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝑐 𝐺))
341, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem33 39692 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
351, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 39688 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
363, 4hlatjcom 39354 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) = (𝐻 𝑐))
3727, 29, 35, 36syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) = (𝐻 𝑐))
3834, 37breqtrrd 5130 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝑐 𝐻))
391, 4dalempeb 39626 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (Base‘𝐾))
40393ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
4120, 3, 4hlatjcl 39353 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) ∈ (Base‘𝐾))
4227, 29, 30, 41syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) ∈ (Base‘𝐾))
431, 4dalemqeb 39627 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (Base‘𝐾))
44433ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
4520, 3, 4hlatjcl 39353 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) ∈ (Base‘𝐾))
4627, 29, 35, 45syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) ∈ (Base‘𝐾))
4720, 2, 3latjlej12 18396 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑐 𝐺) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑐 𝐻) ∈ (Base‘𝐾))) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4816, 40, 42, 44, 46, 47syl122anc 1381 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4933, 38, 48mp2and 699 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻)))
5020, 4atbase 39275 . . . . . . . . . . . 12 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
5130, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
5220, 4atbase 39275 . . . . . . . . . . . 12 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
5335, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
5420, 3latjjdi 18432 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾))) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5516, 18, 51, 53, 54syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5649, 55breqtrrd 5130 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) (𝑐 (𝐺 𝐻)))
571, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem37 39696 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
581, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem34 39693 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
593, 4hlatjcom 39354 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) = (𝐼 𝑐))
6027, 29, 58, 59syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) = (𝐼 𝑐))
6157, 60breqtrrd 5130 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝑐 𝐼))
621, 3, 4dalempjqeb 39632 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
63623ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6420, 3, 4hlatjcl 39353 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
6527, 30, 35, 64syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
6620, 3latjcl 18380 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾)) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
6716, 18, 65, 66syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
681, 4dalemreb 39628 . . . . . . . . . . 11 (𝜑𝑅 ∈ (Base‘𝐾))
69683ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
7020, 3, 4hlatjcl 39353 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) ∈ (Base‘𝐾))
7127, 29, 58, 70syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) ∈ (Base‘𝐾))
7220, 2, 3latjlej12 18396 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑐 𝐼) ∈ (Base‘𝐾))) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7316, 63, 67, 69, 71, 72syl122anc 1381 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7456, 61, 73mp2and 699 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7520, 4atbase 39275 . . . . . . . . . 10 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
7658, 75syl 17 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
7720, 3latjjdi 18432 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾))) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7816, 18, 65, 76, 77syl13anc 1374 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7974, 78breqtrrd 5130 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (𝑐 ((𝐺 𝐻) 𝐼)))
808, 79eqbrtrid 5137 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (𝑐 ((𝐺 𝐻) 𝐼)))
81 breq2 5106 . . . . . 6 ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → (𝑌 (𝑐 ((𝐺 𝐻) 𝐼)) ↔ 𝑌 ((𝐺 𝐻) 𝐼)))
8280, 81syl5ibcom 245 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
8324, 82sylbid 240 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
841dalemyeo 39619 . . . . . 6 (𝜑𝑌𝑂)
85843ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
862, 7lplncmp 39549 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑂 ∧ ((𝐺 𝐻) 𝐼) ∈ 𝑂) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8727, 85, 19, 86syl3anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8883, 87sylibd 239 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 = ((𝐺 𝐻) 𝐼)))
8988necon3ad 2938 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ≠ ((𝐺 𝐻) 𝐼) → ¬ 𝑐 ((𝐺 𝐻) 𝐼)))
9014, 89mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Latclat 18372  Atomscatm 39249  HLchlt 39336  LPlanesclpl 39479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487
This theorem is referenced by:  dalem45  39704
  Copyright terms: Public domain W3C validator