Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem44 Structured version   Visualization version   GIF version

Theorem dalem44 39825
Description: Lemma for dath 39845. Dummy center of perspectivity 𝑐 lies outside of plane 𝐺𝐻𝐼. (Contributed by NM, 16-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem44.m = (meet‘𝐾)
dalem44.o 𝑂 = (LPlanes‘𝐾)
dalem44.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem44.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem44.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem44.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem44.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem44 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))

Proof of Theorem dalem44
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalem.l . . . 4 = (le‘𝐾)
3 dalem.j . . . 4 = (join‘𝐾)
4 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
6 dalem44.m . . . 4 = (meet‘𝐾)
7 dalem44.o . . . 4 𝑂 = (LPlanes‘𝐾)
8 dalem44.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem44.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem44.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
11 dalem44.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
12 dalem44.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem43 39824 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ≠ 𝑌)
1413necomd 2983 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ≠ ((𝐺 𝐻) 𝐼))
151dalemkelat 39733 . . . . . . 7 (𝜑𝐾 ∈ Lat)
16153ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
175, 4dalemcceb 39798 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
18173ad2ant3 1135 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem42 39823 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ 𝑂)
20 eqid 2731 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 7lplnbase 39643 . . . . . . 7 (((𝐺 𝐻) 𝐼) ∈ 𝑂 → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
2320, 2, 3latleeqj1 18357 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾)) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
2416, 18, 22, 23syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) ↔ (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼)))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem28 39809 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
261dalemkehl 39732 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ HL)
27263ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
285dalemccea 39792 . . . . . . . . . . . . . 14 (𝜓𝑐𝐴)
29283ad2ant3 1135 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
301, 2, 3, 4, 5, 6, 7, 8, 9, 10dalem23 39805 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
313, 4hlatjcom 39477 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) = (𝐺 𝑐))
3227, 29, 30, 31syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) = (𝐺 𝑐))
3325, 32breqtrrd 5117 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝑐 𝐺))
341, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem33 39814 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
351, 2, 3, 4, 5, 6, 7, 8, 9, 11dalem29 39810 . . . . . . . . . . . . 13 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
363, 4hlatjcom 39477 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) = (𝐻 𝑐))
3727, 29, 35, 36syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) = (𝐻 𝑐))
3834, 37breqtrrd 5117 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝑐 𝐻))
391, 4dalempeb 39748 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ (Base‘𝐾))
40393ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
4120, 3, 4hlatjcl 39476 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐺𝐴) → (𝑐 𝐺) ∈ (Base‘𝐾))
4227, 29, 30, 41syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐺) ∈ (Base‘𝐾))
431, 4dalemqeb 39749 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (Base‘𝐾))
44433ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
4520, 3, 4hlatjcl 39476 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐻𝐴) → (𝑐 𝐻) ∈ (Base‘𝐾))
4627, 29, 35, 45syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐻) ∈ (Base‘𝐾))
4720, 2, 3latjlej12 18361 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝑐 𝐺) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑐 𝐻) ∈ (Base‘𝐾))) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4816, 40, 42, 44, 46, 47syl122anc 1381 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝑐 𝐺) ∧ 𝑄 (𝑐 𝐻)) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻))))
4933, 38, 48mp2and 699 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝑐 𝐺) (𝑐 𝐻)))
5020, 4atbase 39398 . . . . . . . . . . . 12 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
5130, 50syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
5220, 4atbase 39398 . . . . . . . . . . . 12 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
5335, 52syl 17 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
5420, 3latjjdi 18397 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ 𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾))) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5516, 18, 51, 53, 54syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) = ((𝑐 𝐺) (𝑐 𝐻)))
5649, 55breqtrrd 5117 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) (𝑐 (𝐺 𝐻)))
571, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem37 39818 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
581, 2, 3, 4, 5, 6, 7, 8, 9, 12dalem34 39815 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
593, 4hlatjcom 39477 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) = (𝐼 𝑐))
6027, 29, 58, 59syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) = (𝐼 𝑐))
6157, 60breqtrrd 5117 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝑐 𝐼))
621, 3, 4dalempjqeb 39754 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
63623ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6420, 3, 4hlatjcl 39476 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
6527, 30, 35, 64syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
6620, 3latjcl 18345 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾)) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
6716, 18, 65, 66syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾))
681, 4dalemreb 39750 . . . . . . . . . . 11 (𝜑𝑅 ∈ (Base‘𝐾))
69683ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
7020, 3, 4hlatjcl 39476 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑐𝐴𝐼𝐴) → (𝑐 𝐼) ∈ (Base‘𝐾))
7127, 29, 58, 70syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝐼) ∈ (Base‘𝐾))
7220, 2, 3latjlej12 18361 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑐 (𝐺 𝐻)) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑐 𝐼) ∈ (Base‘𝐾))) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7316, 63, 67, 69, 71, 72syl122anc 1381 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) (𝑐 (𝐺 𝐻)) ∧ 𝑅 (𝑐 𝐼)) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼))))
7456, 61, 73mp2and 699 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7520, 4atbase 39398 . . . . . . . . . 10 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
7658, 75syl 17 . . . . . . . . 9 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
7720, 3latjjdi 18397 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑐 ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾))) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7816, 18, 65, 76, 77syl13anc 1374 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼)) = ((𝑐 (𝐺 𝐻)) (𝑐 𝐼)))
7974, 78breqtrrd 5117 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (𝑐 ((𝐺 𝐻) 𝐼)))
808, 79eqbrtrid 5124 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (𝑐 ((𝐺 𝐻) 𝐼)))
81 breq2 5093 . . . . . 6 ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → (𝑌 (𝑐 ((𝐺 𝐻) 𝐼)) ↔ 𝑌 ((𝐺 𝐻) 𝐼)))
8280, 81syl5ibcom 245 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝑐 ((𝐺 𝐻) 𝐼)) = ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
8324, 82sylbid 240 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 ((𝐺 𝐻) 𝐼)))
841dalemyeo 39741 . . . . . 6 (𝜑𝑌𝑂)
85843ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑌𝑂)
862, 7lplncmp 39671 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝑂 ∧ ((𝐺 𝐻) 𝐼) ∈ 𝑂) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8727, 85, 19, 86syl3anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ((𝐺 𝐻) 𝐼) ↔ 𝑌 = ((𝐺 𝐻) 𝐼)))
8883, 87sylibd 239 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 ((𝐺 𝐻) 𝐼) → 𝑌 = ((𝐺 𝐻) 𝐼)))
8988necon3ad 2941 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑌 ≠ ((𝐺 𝐻) 𝐼) → ¬ 𝑐 ((𝐺 𝐻) 𝐼)))
9014, 89mpd 15 1 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 ((𝐺 𝐻) 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39372  HLchlt 39459  LPlanesclpl 39601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609
This theorem is referenced by:  dalem45  39826
  Copyright terms: Public domain W3C validator