Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem38 Structured version   Visualization version   GIF version

Theorem dalem38 37336
Description: Lemma for dath 37362. Plane 𝑌 belongs to the 3-dimensional volume 𝐺𝐻𝐼𝑐. (Contributed by NM, 5-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem38 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))

Proof of Theorem dalem38
StepHypRef Expression
1 dalem38.y . 2 𝑌 = ((𝑃 𝑄) 𝑅)
2 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
3 dalem.l . . . . . . 7 = (le‘𝐾)
4 dalem.j . . . . . . 7 = (join‘𝐾)
5 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
7 dalem38.m . . . . . . 7 = (meet‘𝐾)
8 dalem38.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
9 dalem38.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem38.g . . . . . . 7 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
112, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem28 37326 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
12 dalem38.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
132, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem33 37331 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
142dalemkelat 37250 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
15143ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
162, 5dalempeb 37265 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
17163ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
182dalemkehl 37249 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
19183ad2ant1 1134 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
202, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem23 37322 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
216dalemccea 37309 . . . . . . . . 9 (𝜓𝑐𝐴)
22213ad2ant3 1136 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
23 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2423, 4, 5hlatjcl 36993 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐺𝐴𝑐𝐴) → (𝐺 𝑐) ∈ (Base‘𝐾))
2519, 20, 22, 24syl3anc 1372 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑐) ∈ (Base‘𝐾))
262, 5dalemqeb 37266 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
27263ad2ant1 1134 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
282, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem29 37327 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
2923, 4, 5hlatjcl 36993 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐻𝐴𝑐𝐴) → (𝐻 𝑐) ∈ (Base‘𝐾))
3019, 28, 22, 29syl3anc 1372 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐻 𝑐) ∈ (Base‘𝐾))
3123, 3, 4latjlej12 17786 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺 𝑐) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐻 𝑐) ∈ (Base‘𝐾))) → ((𝑃 (𝐺 𝑐) ∧ 𝑄 (𝐻 𝑐)) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐))))
3215, 17, 25, 27, 30, 31syl122anc 1380 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝐺 𝑐) ∧ 𝑄 (𝐻 𝑐)) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐))))
3311, 13, 32mp2and 699 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐)))
3423, 5atbase 36915 . . . . . . 7 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
3520, 34syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
3623, 5atbase 36915 . . . . . . 7 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
3728, 36syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
386, 5dalemcceb 37315 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
39383ad2ant3 1136 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4023, 4latjjdir 17823 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾))) → ((𝐺 𝐻) 𝑐) = ((𝐺 𝑐) (𝐻 𝑐)))
4115, 35, 37, 39, 40syl13anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑐) = ((𝐺 𝑐) (𝐻 𝑐)))
4233, 41breqtrrd 5055 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝐺 𝐻) 𝑐))
43 dalem38.i . . . . 5 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
442, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem37 37335 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
452, 4, 5dalempjqeb 37271 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
46453ad2ant1 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
4723, 4, 5hlatjcl 36993 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
4819, 20, 28, 47syl3anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
4923, 4latjcl 17770 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾))
5015, 48, 39, 49syl3anc 1372 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾))
512, 5dalemreb 37267 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
52513ad2ant1 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
532, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem34 37332 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
5423, 4, 5hlatjcl 36993 . . . . . 6 ((𝐾 ∈ HL ∧ 𝐼𝐴𝑐𝐴) → (𝐼 𝑐) ∈ (Base‘𝐾))
5519, 53, 22, 54syl3anc 1372 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝐼 𝑐) ∈ (Base‘𝐾))
5623, 3, 4latjlej12 17786 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝐼 𝑐) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝐺 𝐻) 𝑐) ∧ 𝑅 (𝐼 𝑐)) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐))))
5715, 46, 50, 52, 55, 56syl122anc 1380 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) ((𝐺 𝐻) 𝑐) ∧ 𝑅 (𝐼 𝑐)) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐))))
5842, 44, 57mp2and 699 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
5923, 5atbase 36915 . . . . 5 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
6053, 59syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
6123, 4latjjdir 17823 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾))) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
6215, 48, 60, 39, 61syl13anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
6358, 62breqtrrd 5055 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝐼) 𝑐))
641, 63eqbrtrid 5062 1 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934   class class class wbr 5027  cfv 6333  (class class class)co 7164  Basecbs 16579  lecple 16668  joincjn 17663  meetcmee 17664  Latclat 17764  Atomscatm 36889  HLchlt 36976  LPlanesclpl 37118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-proset 17647  df-poset 17665  df-plt 17677  df-lub 17693  df-glb 17694  df-join 17695  df-meet 17696  df-p0 17758  df-lat 17765  df-clat 17827  df-oposet 36802  df-ol 36804  df-oml 36805  df-covers 36892  df-ats 36893  df-atl 36924  df-cvlat 36948  df-hlat 36977  df-llines 37124  df-lplanes 37125
This theorem is referenced by:  dalem39  37337
  Copyright terms: Public domain W3C validator