Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem38 Structured version   Visualization version   GIF version

Theorem dalem38 36861
Description: Lemma for dath 36887. Plane 𝑌 belongs to the 3-dimensional volume 𝐺𝐻𝐼𝑐. (Contributed by NM, 5-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem38 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))

Proof of Theorem dalem38
StepHypRef Expression
1 dalem38.y . 2 𝑌 = ((𝑃 𝑄) 𝑅)
2 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
3 dalem.l . . . . . . 7 = (le‘𝐾)
4 dalem.j . . . . . . 7 = (join‘𝐾)
5 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
7 dalem38.m . . . . . . 7 = (meet‘𝐾)
8 dalem38.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
9 dalem38.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem38.g . . . . . . 7 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
112, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem28 36851 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
12 dalem38.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
132, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem33 36856 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
142dalemkelat 36775 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
15143ad2ant1 1129 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
162, 5dalempeb 36790 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
17163ad2ant1 1129 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
182dalemkehl 36774 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
19183ad2ant1 1129 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
202, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem23 36847 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
216dalemccea 36834 . . . . . . . . 9 (𝜓𝑐𝐴)
22213ad2ant3 1131 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
23 eqid 2821 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2423, 4, 5hlatjcl 36518 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐺𝐴𝑐𝐴) → (𝐺 𝑐) ∈ (Base‘𝐾))
2519, 20, 22, 24syl3anc 1367 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑐) ∈ (Base‘𝐾))
262, 5dalemqeb 36791 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
27263ad2ant1 1129 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
282, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem29 36852 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
2923, 4, 5hlatjcl 36518 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐻𝐴𝑐𝐴) → (𝐻 𝑐) ∈ (Base‘𝐾))
3019, 28, 22, 29syl3anc 1367 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐻 𝑐) ∈ (Base‘𝐾))
3123, 3, 4latjlej12 17677 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺 𝑐) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐻 𝑐) ∈ (Base‘𝐾))) → ((𝑃 (𝐺 𝑐) ∧ 𝑄 (𝐻 𝑐)) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐))))
3215, 17, 25, 27, 30, 31syl122anc 1375 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝐺 𝑐) ∧ 𝑄 (𝐻 𝑐)) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐))))
3311, 13, 32mp2and 697 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐)))
3423, 5atbase 36440 . . . . . . 7 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
3520, 34syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
3623, 5atbase 36440 . . . . . . 7 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
3728, 36syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
386, 5dalemcceb 36840 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
39383ad2ant3 1131 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4023, 4latjjdir 17714 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾))) → ((𝐺 𝐻) 𝑐) = ((𝐺 𝑐) (𝐻 𝑐)))
4115, 35, 37, 39, 40syl13anc 1368 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑐) = ((𝐺 𝑐) (𝐻 𝑐)))
4233, 41breqtrrd 5094 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝐺 𝐻) 𝑐))
43 dalem38.i . . . . 5 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
442, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem37 36860 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
452, 4, 5dalempjqeb 36796 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
46453ad2ant1 1129 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
4723, 4, 5hlatjcl 36518 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
4819, 20, 28, 47syl3anc 1367 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
4923, 4latjcl 17661 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾))
5015, 48, 39, 49syl3anc 1367 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾))
512, 5dalemreb 36792 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
52513ad2ant1 1129 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
532, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem34 36857 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
5423, 4, 5hlatjcl 36518 . . . . . 6 ((𝐾 ∈ HL ∧ 𝐼𝐴𝑐𝐴) → (𝐼 𝑐) ∈ (Base‘𝐾))
5519, 53, 22, 54syl3anc 1367 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝐼 𝑐) ∈ (Base‘𝐾))
5623, 3, 4latjlej12 17677 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝐼 𝑐) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝐺 𝐻) 𝑐) ∧ 𝑅 (𝐼 𝑐)) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐))))
5715, 46, 50, 52, 55, 56syl122anc 1375 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) ((𝐺 𝐻) 𝑐) ∧ 𝑅 (𝐼 𝑐)) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐))))
5842, 44, 57mp2and 697 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
5923, 5atbase 36440 . . . . 5 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
6053, 59syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
6123, 4latjjdir 17714 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾))) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
6215, 48, 60, 39, 61syl13anc 1368 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
6358, 62breqtrrd 5094 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝐼) 𝑐))
641, 63eqbrtrid 5101 1 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  Latclat 17655  Atomscatm 36414  HLchlt 36501  LPlanesclpl 36643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650
This theorem is referenced by:  dalem39  36862
  Copyright terms: Public domain W3C validator