MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deceq1 Structured version   Visualization version   GIF version

Theorem deceq1 12670
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
deceq1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)

Proof of Theorem deceq1
StepHypRef Expression
1 oveq2 7402 . . 3 (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵))
21oveq1d 7409 . 2 (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶))
3 df-dec 12666 . 2 𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶)
4 df-dec 12666 . 2 𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶)
52, 3, 43eqtr4g 2790 1 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7394  1c1 11087   + caddc 11089   · cmul 11091  9c9 12259  cdc 12665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ov 7397  df-dec 12666
This theorem is referenced by:  deceq1i  12672
  Copyright terms: Public domain W3C validator