| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deceq1 | ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7402 | . . 3 ⊢ (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵)) | |
| 2 | 1 | oveq1d 7409 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶)) |
| 3 | df-dec 12666 | . 2 ⊢ ;𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶) | |
| 4 | df-dec 12666 | . 2 ⊢ ;𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7394 1c1 11087 + caddc 11089 · cmul 11091 9c9 12259 ;cdc 12665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 df-ov 7397 df-dec 12666 |
| This theorem is referenced by: deceq1i 12672 |
| Copyright terms: Public domain | W3C validator |