| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deceq1 | ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . 3 ⊢ (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵)) | |
| 2 | 1 | oveq1d 7361 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶)) |
| 3 | df-dec 12589 | . 2 ⊢ ;𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶) | |
| 4 | df-dec 12589 | . 2 ⊢ ;𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 · cmul 11011 9c9 12187 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-dec 12589 |
| This theorem is referenced by: deceq1i 12595 |
| Copyright terms: Public domain | W3C validator |