Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
deceq1 | ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7181 | . . 3 ⊢ (𝐴 = 𝐵 → ((9 + 1) · 𝐴) = ((9 + 1) · 𝐵)) | |
2 | 1 | oveq1d 7188 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐴) + 𝐶) = (((9 + 1) · 𝐵) + 𝐶)) |
3 | df-dec 12183 | . 2 ⊢ ;𝐴𝐶 = (((9 + 1) · 𝐴) + 𝐶) | |
4 | df-dec 12183 | . 2 ⊢ ;𝐵𝐶 = (((9 + 1) · 𝐵) + 𝐶) | |
5 | 2, 3, 4 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 (class class class)co 7173 1c1 10619 + caddc 10621 · cmul 10623 9c9 11781 ;cdc 12182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3401 df-un 3849 df-in 3851 df-ss 3861 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-iota 6298 df-fv 6348 df-ov 7176 df-dec 12183 |
This theorem is referenced by: deceq1i 12189 |
Copyright terms: Public domain | W3C validator |