HomeHome Metamath Proof Explorer
Theorem List (p. 127 of 482)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30715)
  Hilbert Space Explorer  Hilbert Space Explorer
(30716-32238)
  Users' Mathboxes  Users' Mathboxes
(32239-48161)
 

Theorem List for Metamath Proof Explorer - 12601-12700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnz 12601 A positive integer is an integer. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.)
(๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„ค)
 
Theoremnnssz 12602 Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
โ„• โІ โ„ค
 
Theoremnn0ssz 12603 Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
โ„•0 โІ โ„ค
 
TheoremnnzOLD 12604 Obsolete version of nnz 12601 as of 1-Feb-2025. (Contributed by NM, 9-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
(๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„ค)
 
Theoremnn0z 12605 A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
(๐‘ โˆˆ โ„•0 โ†’ ๐‘ โˆˆ โ„ค)
 
Theoremnn0zd 12606 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„•0)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„ค)
 
Theoremnnzd 12607 A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„•)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„ค)
 
Theoremnnzi 12608 A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
๐‘ โˆˆ โ„•    โ‡’   ๐‘ โˆˆ โ„ค
 
Theoremnn0zi 12609 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
๐‘ โˆˆ โ„•0    โ‡’   ๐‘ โˆˆ โ„ค
 
Theoremelnnz1 12610 Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(๐‘ โˆˆ โ„• โ†” (๐‘ โˆˆ โ„ค โˆง 1 โ‰ค ๐‘))
 
Theoremznnnlt1 12611 An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.)
(๐‘ โˆˆ โ„ค โ†’ (ยฌ ๐‘ โˆˆ โ„• โ†” ๐‘ < 1))
 
Theoremnnzrab 12612 Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
โ„• = {๐‘ฅ โˆˆ โ„ค โˆฃ 1 โ‰ค ๐‘ฅ}
 
Theoremnn0zrab 12613 Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
โ„•0 = {๐‘ฅ โˆˆ โ„ค โˆฃ 0 โ‰ค ๐‘ฅ}
 
Theorem1z 12614 One is an integer. (Contributed by NM, 10-May-2004.)
1 โˆˆ โ„ค
 
Theorem1zzd 12615 One is an integer, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.)
(๐œ‘ โ†’ 1 โˆˆ โ„ค)
 
Theorem2z 12616 2 is an integer. (Contributed by NM, 10-May-2004.)
2 โˆˆ โ„ค
 
Theorem3z 12617 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.)
3 โˆˆ โ„ค
 
Theorem4z 12618 4 is an integer. (Contributed by BJ, 26-Mar-2020.)
4 โˆˆ โ„ค
 
Theoremznegcl 12619 Closure law for negative integers. (Contributed by NM, 9-May-2004.)
(๐‘ โˆˆ โ„ค โ†’ -๐‘ โˆˆ โ„ค)
 
Theoremneg1z 12620 -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.)
-1 โˆˆ โ„ค
 
Theoremznegclb 12621 A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(๐ด โˆˆ โ„‚ โ†’ (๐ด โˆˆ โ„ค โ†” -๐ด โˆˆ โ„ค))
 
Theoremnn0negz 12622 The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
(๐‘ โˆˆ โ„•0 โ†’ -๐‘ โˆˆ โ„ค)
 
Theoremnn0negzi 12623 The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
๐‘ โˆˆ โ„•0    โ‡’   -๐‘ โˆˆ โ„ค
 
Theoremzaddcl 12624 Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ + ๐‘) โˆˆ โ„ค)
 
Theorempeano2z 12625 Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
(๐‘ โˆˆ โ„ค โ†’ (๐‘ + 1) โˆˆ โ„ค)
 
Theoremzsubcl 12626 Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โˆ’ ๐‘) โˆˆ โ„ค)
 
Theorempeano2zm 12627 "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.)
(๐‘ โˆˆ โ„ค โ†’ (๐‘ โˆ’ 1) โˆˆ โ„ค)
 
Theoremzletr 12628 Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
((๐ฝ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค โˆง ๐ฟ โˆˆ โ„ค) โ†’ ((๐ฝ โ‰ค ๐พ โˆง ๐พ โ‰ค ๐ฟ) โ†’ ๐ฝ โ‰ค ๐ฟ))
 
Theoremzrevaddcl 12629 Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
(๐‘ โˆˆ โ„ค โ†’ ((๐‘€ โˆˆ โ„‚ โˆง (๐‘€ + ๐‘) โˆˆ โ„ค) โ†” ๐‘€ โˆˆ โ„ค))
 
Theoremznnsub 12630 The positive difference of unequal integers is a positive integer. (Generalization of nnsub 12278.) (Contributed by NM, 11-May-2004.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ < ๐‘ โ†” (๐‘ โˆ’ ๐‘€) โˆˆ โ„•))
 
Theoremznn0sub 12631 The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 12544.) (Contributed by NM, 14-Jul-2005.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โ‰ค ๐‘ โ†” (๐‘ โˆ’ ๐‘€) โˆˆ โ„•0))
 
Theoremnzadd 12632 The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.)
((๐ด โˆˆ (โ„ โˆ– โ„ค) โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด + ๐ต) โˆˆ (โ„ โˆ– โ„ค))
 
Theoremzmulcl 12633 Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ ยท ๐‘) โˆˆ โ„ค)
 
Theoremzltp1le 12634 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ < ๐‘ โ†” (๐‘€ + 1) โ‰ค ๐‘))
 
Theoremzleltp1 12635 Integer ordering relation. (Contributed by NM, 10-May-2004.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โ‰ค ๐‘ โ†” ๐‘€ < (๐‘ + 1)))
 
Theoremzlem1lt 12636 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ โ‰ค ๐‘ โ†” (๐‘€ โˆ’ 1) < ๐‘))
 
Theoremzltlem1 12637 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ < ๐‘ โ†” ๐‘€ โ‰ค (๐‘ โˆ’ 1)))
 
Theoremzgt0ge1 12638 An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.)
(๐‘ โˆˆ โ„ค โ†’ (0 < ๐‘ โ†” 1 โ‰ค ๐‘))
 
Theoremnnleltp1 12639 Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (๐ด โ‰ค ๐ต โ†” ๐ด < (๐ต + 1)))
 
Theoremnnltp1le 12640 Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.)
((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (๐ด < ๐ต โ†” (๐ด + 1) โ‰ค ๐ต))
 
Theoremnnaddm1cl 12641 Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ ((๐ด + ๐ต) โˆ’ 1) โˆˆ โ„•)
 
Theoremnn0ltp1le 12642 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘€ < ๐‘ โ†” (๐‘€ + 1) โ‰ค ๐‘))
 
Theoremnn0leltp1 12643 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.)
((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘€ โ‰ค ๐‘ โ†” ๐‘€ < (๐‘ + 1)))
 
Theoremnn0ltlem1 12644 Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘€ < ๐‘ โ†” ๐‘€ โ‰ค (๐‘ โˆ’ 1)))
 
Theoremnn0sub2 12645 Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘€ โ‰ค ๐‘) โ†’ (๐‘ โˆ’ ๐‘€) โˆˆ โ„•0)
 
Theoremnn0lt10b 12646 A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.)
(๐‘ โˆˆ โ„•0 โ†’ (๐‘ < 1 โ†” ๐‘ = 0))
 
Theoremnn0lt2 12647 A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
((๐‘ โˆˆ โ„•0 โˆง ๐‘ < 2) โ†’ (๐‘ = 0 โˆจ ๐‘ = 1))
 
Theoremnn0le2is012 12648 A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
((๐‘ โˆˆ โ„•0 โˆง ๐‘ โ‰ค 2) โ†’ (๐‘ = 0 โˆจ ๐‘ = 1 โˆจ ๐‘ = 2))
 
Theoremnn0lem1lt 12649 Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐‘€ โ‰ค ๐‘ โ†” (๐‘€ โˆ’ 1) < ๐‘))
 
Theoremnnlem1lt 12650 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘€ โ‰ค ๐‘ โ†” (๐‘€ โˆ’ 1) < ๐‘))
 
Theoremnnltlem1 12651 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
((๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•) โ†’ (๐‘€ < ๐‘ โ†” ๐‘€ โ‰ค (๐‘ โˆ’ 1)))
 
Theoremnnm1ge0 12652 A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.)
(๐‘ โˆˆ โ„• โ†’ 0 โ‰ค (๐‘ โˆ’ 1))
 
Theoremnn0ge0div 12653 Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((๐พ โˆˆ โ„•0 โˆง ๐ฟ โˆˆ โ„•) โ†’ 0 โ‰ค (๐พ / ๐ฟ))
 
Theoremzdiv 12654* Two ways to express "๐‘€ divides ๐‘". (Contributed by NM, 3-Oct-2008.)
((๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„ค) โ†’ (โˆƒ๐‘˜ โˆˆ โ„ค (๐‘€ ยท ๐‘˜) = ๐‘ โ†” (๐‘ / ๐‘€) โˆˆ โ„ค))
 
Theoremzdivadd 12655 Property of divisibility: if ๐ท divides ๐ด and ๐ต then it divides ๐ด + ๐ต. (Contributed by NM, 3-Oct-2008.)
(((๐ท โˆˆ โ„• โˆง ๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง ((๐ด / ๐ท) โˆˆ โ„ค โˆง (๐ต / ๐ท) โˆˆ โ„ค)) โ†’ ((๐ด + ๐ต) / ๐ท) โˆˆ โ„ค)
 
Theoremzdivmul 12656 Property of divisibility: if ๐ท divides ๐ด then it divides ๐ต ยท ๐ด. (Contributed by NM, 3-Oct-2008.)
(((๐ท โˆˆ โ„• โˆง ๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โˆง (๐ด / ๐ท) โˆˆ โ„ค) โ†’ ((๐ต ยท ๐ด) / ๐ท) โˆˆ โ„ค)
 
Theoremzextle 12657* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง โˆ€๐‘˜ โˆˆ โ„ค (๐‘˜ โ‰ค ๐‘€ โ†” ๐‘˜ โ‰ค ๐‘)) โ†’ ๐‘€ = ๐‘)
 
Theoremzextlt 12658* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง โˆ€๐‘˜ โˆˆ โ„ค (๐‘˜ < ๐‘€ โ†” ๐‘˜ < ๐‘)) โ†’ ๐‘€ = ๐‘)
 
Theoremrecnz 12659 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
((๐ด โˆˆ โ„ โˆง 1 < ๐ด) โ†’ ยฌ (1 / ๐ด) โˆˆ โ„ค)
 
Theorembtwnnz 12660 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
((๐ด โˆˆ โ„ค โˆง ๐ด < ๐ต โˆง ๐ต < (๐ด + 1)) โ†’ ยฌ ๐ต โˆˆ โ„ค)
 
Theoremgtndiv 12661 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„• โˆง ๐ต < ๐ด) โ†’ ยฌ (๐ต / ๐ด) โˆˆ โ„ค)
 
Theoremhalfnz 12662 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
ยฌ (1 / 2) โˆˆ โ„ค
 
Theorem3halfnz 12663 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
ยฌ (3 / 2) โˆˆ โ„ค
 
Theoremsuprzcl 12664* The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
((๐ด โІ โ„ค โˆง ๐ด โ‰  โˆ… โˆง โˆƒ๐‘ฅ โˆˆ โ„ โˆ€๐‘ฆ โˆˆ ๐ด ๐‘ฆ โ‰ค ๐‘ฅ) โ†’ sup(๐ด, โ„, < ) โˆˆ ๐ด)
 
Theoremprime 12665* Two ways to express "๐ด is a prime number (or 1)". See also isprm 16635. (Contributed by NM, 4-May-2005.)
(๐ด โˆˆ โ„• โ†’ (โˆ€๐‘ฅ โˆˆ โ„• ((๐ด / ๐‘ฅ) โˆˆ โ„• โ†’ (๐‘ฅ = 1 โˆจ ๐‘ฅ = ๐ด)) โ†” โˆ€๐‘ฅ โˆˆ โ„• ((1 < ๐‘ฅ โˆง ๐‘ฅ โ‰ค ๐ด โˆง (๐ด / ๐‘ฅ) โˆˆ โ„•) โ†’ ๐‘ฅ = ๐ด)))
 
Theoremmsqznn 12666 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
((๐ด โˆˆ โ„ค โˆง ๐ด โ‰  0) โ†’ (๐ด ยท ๐ด) โˆˆ โ„•)
 
Theoremzneo 12667 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (2 ยท ๐ด) โ‰  ((2 ยท ๐ต) + 1))
 
Theoremnneo 12668 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
(๐‘ โˆˆ โ„• โ†’ ((๐‘ / 2) โˆˆ โ„• โ†” ยฌ ((๐‘ + 1) / 2) โˆˆ โ„•))
 
Theoremnneoi 12669 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
๐‘ โˆˆ โ„•    โ‡’   ((๐‘ / 2) โˆˆ โ„• โ†” ยฌ ((๐‘ + 1) / 2) โˆˆ โ„•)
 
Theoremzeo 12670 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
(๐‘ โˆˆ โ„ค โ†’ ((๐‘ / 2) โˆˆ โ„ค โˆจ ((๐‘ + 1) / 2) โˆˆ โ„ค))
 
Theoremzeo2 12671 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
(๐‘ โˆˆ โ„ค โ†’ ((๐‘ / 2) โˆˆ โ„ค โ†” ยฌ ((๐‘ + 1) / 2) โˆˆ โ„ค))
 
Theorempeano2uz2 12672* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ {๐‘ฅ โˆˆ โ„ค โˆฃ ๐ด โ‰ค ๐‘ฅ}) โ†’ (๐ต + 1) โˆˆ {๐‘ฅ โˆˆ โ„ค โˆฃ ๐ด โ‰ค ๐‘ฅ})
 
Theorempeano5uzi 12673* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
๐‘ โˆˆ โ„ค    โ‡’   ((๐‘ โˆˆ ๐ด โˆง โˆ€๐‘ฅ โˆˆ ๐ด (๐‘ฅ + 1) โˆˆ ๐ด) โ†’ {๐‘˜ โˆˆ โ„ค โˆฃ ๐‘ โ‰ค ๐‘˜} โІ ๐ด)
 
Theorempeano5uzti 12674* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
(๐‘ โˆˆ โ„ค โ†’ ((๐‘ โˆˆ ๐ด โˆง โˆ€๐‘ฅ โˆˆ ๐ด (๐‘ฅ + 1) โˆˆ ๐ด) โ†’ {๐‘˜ โˆˆ โ„ค โˆฃ ๐‘ โ‰ค ๐‘˜} โІ ๐ด))
 
Theoremdfuzi 12675* An expression for the upper integers that start at ๐‘ that is analogous to dfnn2 12247 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
๐‘ โˆˆ โ„ค    โ‡’   {๐‘ง โˆˆ โ„ค โˆฃ ๐‘ โ‰ค ๐‘ง} = โˆฉ {๐‘ฅ โˆฃ (๐‘ โˆˆ ๐‘ฅ โˆง โˆ€๐‘ฆ โˆˆ ๐‘ฅ (๐‘ฆ + 1) โˆˆ ๐‘ฅ)}
 
Theoremuzind 12676* Induction on the upper integers that start at ๐‘€. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
(๐‘— = ๐‘€ โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘— = ๐‘˜ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘— = (๐‘˜ + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘— = ๐‘ โ†’ (๐œ‘ โ†” ๐œ))    &   (๐‘€ โˆˆ โ„ค โ†’ ๐œ“)    &   ((๐‘€ โˆˆ โ„ค โˆง ๐‘˜ โˆˆ โ„ค โˆง ๐‘€ โ‰ค ๐‘˜) โ†’ (๐œ’ โ†’ ๐œƒ))    โ‡’   ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘€ โ‰ค ๐‘) โ†’ ๐œ)
 
Theoremuzind2 12677* Induction on the upper integers that start after an integer ๐‘€. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
(๐‘— = (๐‘€ + 1) โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘— = ๐‘˜ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘— = (๐‘˜ + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘— = ๐‘ โ†’ (๐œ‘ โ†” ๐œ))    &   (๐‘€ โˆˆ โ„ค โ†’ ๐œ“)    &   ((๐‘€ โˆˆ โ„ค โˆง ๐‘˜ โˆˆ โ„ค โˆง ๐‘€ < ๐‘˜) โ†’ (๐œ’ โ†’ ๐œƒ))    โ‡’   ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘€ < ๐‘) โ†’ ๐œ)
 
Theoremuzind3 12678* Induction on the upper integers that start at an integer ๐‘€. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
(๐‘— = ๐‘€ โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘— = ๐‘š โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘— = (๐‘š + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘— = ๐‘ โ†’ (๐œ‘ โ†” ๐œ))    &   (๐‘€ โˆˆ โ„ค โ†’ ๐œ“)    &   ((๐‘€ โˆˆ โ„ค โˆง ๐‘š โˆˆ {๐‘˜ โˆˆ โ„ค โˆฃ ๐‘€ โ‰ค ๐‘˜}) โ†’ (๐œ’ โ†’ ๐œƒ))    โ‡’   ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ {๐‘˜ โˆˆ โ„ค โˆฃ ๐‘€ โ‰ค ๐‘˜}) โ†’ ๐œ)
 
Theoremnn0ind 12679* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
(๐‘ฅ = 0 โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘ฅ = ๐ด โ†’ (๐œ‘ โ†” ๐œ))    &   ๐œ“    &   (๐‘ฆ โˆˆ โ„•0 โ†’ (๐œ’ โ†’ ๐œƒ))    โ‡’   (๐ด โˆˆ โ„•0 โ†’ ๐œ)
 
Theoremnn0indALT 12680* Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 12679 or nn0indALT 12680 may be used; see comment for nnind 12252. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
(๐‘ฆ โˆˆ โ„•0 โ†’ (๐œ’ โ†’ ๐œƒ))    &   ๐œ“    &   (๐‘ฅ = 0 โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘ฅ = ๐ด โ†’ (๐œ‘ โ†” ๐œ))    โ‡’   (๐ด โˆˆ โ„•0 โ†’ ๐œ)
 
Theoremnn0indd 12681* Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(๐‘ฅ = 0 โ†’ (๐œ“ โ†” ๐œ’))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ“ โ†” ๐œƒ))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ“ โ†” ๐œ))    &   (๐‘ฅ = ๐ด โ†’ (๐œ“ โ†” ๐œ‚))    &   (๐œ‘ โ†’ ๐œ’)    &   (((๐œ‘ โˆง ๐‘ฆ โˆˆ โ„•0) โˆง ๐œƒ) โ†’ ๐œ)    โ‡’   ((๐œ‘ โˆง ๐ด โˆˆ โ„•0) โ†’ ๐œ‚)
 
Theoremfzind 12682* Induction on the integers from ๐‘€ to ๐‘ inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(๐‘ฅ = ๐‘€ โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘ฅ = ๐พ โ†’ (๐œ‘ โ†” ๐œ))    &   ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐‘€ โ‰ค ๐‘) โ†’ ๐œ“)    &   (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘€ โ‰ค ๐‘ฆ โˆง ๐‘ฆ < ๐‘)) โ†’ (๐œ’ โ†’ ๐œƒ))    โ‡’   (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐พ โˆˆ โ„ค โˆง ๐‘€ โ‰ค ๐พ โˆง ๐พ โ‰ค ๐‘)) โ†’ ๐œ)
 
Theoremfnn0ind 12683* Induction on the integers from 0 to ๐‘ inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
(๐‘ฅ = 0 โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘ฅ = ๐พ โ†’ (๐œ‘ โ†” ๐œ))    &   (๐‘ โˆˆ โ„•0 โ†’ ๐œ“)    &   ((๐‘ โˆˆ โ„•0 โˆง ๐‘ฆ โˆˆ โ„•0 โˆง ๐‘ฆ < ๐‘) โ†’ (๐œ’ โ†’ ๐œƒ))    โ‡’   ((๐‘ โˆˆ โ„•0 โˆง ๐พ โˆˆ โ„•0 โˆง ๐พ โ‰ค ๐‘) โ†’ ๐œ)
 
Theoremnn0ind-raph 12684* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
(๐‘ฅ = 0 โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘ฅ = ๐ด โ†’ (๐œ‘ โ†” ๐œ))    &   ๐œ“    &   (๐‘ฆ โˆˆ โ„•0 โ†’ (๐œ’ โ†’ ๐œƒ))    โ‡’   (๐ด โˆˆ โ„•0 โ†’ ๐œ)
 
Theoremzindd 12685* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
(๐‘ฅ = 0 โ†’ (๐œ‘ โ†” ๐œ“))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ’))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ‘ โ†” ๐œ))    &   (๐‘ฅ = -๐‘ฆ โ†’ (๐œ‘ โ†” ๐œƒ))    &   (๐‘ฅ = ๐ด โ†’ (๐œ‘ โ†” ๐œ‚))    &   (๐œ โ†’ ๐œ“)    &   (๐œ โ†’ (๐‘ฆ โˆˆ โ„•0 โ†’ (๐œ’ โ†’ ๐œ)))    &   (๐œ โ†’ (๐‘ฆ โˆˆ โ„• โ†’ (๐œ’ โ†’ ๐œƒ)))    โ‡’   (๐œ โ†’ (๐ด โˆˆ โ„ค โ†’ ๐œ‚))
 
Theoremfzindd 12686* Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.)
(๐‘ฅ = ๐‘€ โ†’ (๐œ“ โ†” ๐œ’))    &   (๐‘ฅ = ๐‘ฆ โ†’ (๐œ“ โ†” ๐œƒ))    &   (๐‘ฅ = (๐‘ฆ + 1) โ†’ (๐œ“ โ†” ๐œ))    &   (๐‘ฅ = ๐ด โ†’ (๐œ“ โ†” ๐œ‚))    &   (๐œ‘ โ†’ ๐œ’)    &   ((๐œ‘ โˆง (๐‘ฆ โˆˆ โ„ค โˆง ๐‘€ โ‰ค ๐‘ฆ โˆง ๐‘ฆ < ๐‘) โˆง ๐œƒ) โ†’ ๐œ)    &   (๐œ‘ โ†’ ๐‘€ โˆˆ โ„ค)    &   (๐œ‘ โ†’ ๐‘ โˆˆ โ„ค)    &   (๐œ‘ โ†’ ๐‘€ โ‰ค ๐‘)    โ‡’   ((๐œ‘ โˆง (๐ด โˆˆ โ„ค โˆง ๐‘€ โ‰ค ๐ด โˆง ๐ด โ‰ค ๐‘)) โ†’ ๐œ‚)
 
Theorembtwnz 12687* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
(๐ด โˆˆ โ„ โ†’ (โˆƒ๐‘ฅ โˆˆ โ„ค ๐‘ฅ < ๐ด โˆง โˆƒ๐‘ฆ โˆˆ โ„ค ๐ด < ๐‘ฆ))
 
Theoremzred 12688 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„ค)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„)
 
Theoremzcnd 12689 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„ค)    โ‡’   (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
 
Theoremznegcld 12690 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„ค)    โ‡’   (๐œ‘ โ†’ -๐ด โˆˆ โ„ค)
 
Theorempeano2zd 12691 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„ค)    โ‡’   (๐œ‘ โ†’ (๐ด + 1) โˆˆ โ„ค)
 
Theoremzaddcld 12692 Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„ค)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„ค)    โ‡’   (๐œ‘ โ†’ (๐ด + ๐ต) โˆˆ โ„ค)
 
Theoremzsubcld 12693 Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„ค)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„ค)    โ‡’   (๐œ‘ โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„ค)
 
Theoremzmulcld 12694 Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.)
(๐œ‘ โ†’ ๐ด โˆˆ โ„ค)    &   (๐œ‘ โ†’ ๐ต โˆˆ โ„ค)    โ‡’   (๐œ‘ โ†’ (๐ด ยท ๐ต) โˆˆ โ„ค)
 
Theoremznnn0nn 12695 The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((๐‘ โˆˆ โ„ค โˆง ยฌ ๐‘ โˆˆ โ„•0) โ†’ -๐‘ โˆˆ โ„•)
 
Theoremzadd2cl 12696 Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
(๐‘ โˆˆ โ„ค โ†’ (๐‘ + 2) โˆˆ โ„ค)
 
Theoremzriotaneg 12697* The negative of the unique integer such that ๐œ‘. (Contributed by AV, 1-Dec-2018.)
(๐‘ฅ = -๐‘ฆ โ†’ (๐œ‘ โ†” ๐œ“))    โ‡’   (โˆƒ!๐‘ฅ โˆˆ โ„ค ๐œ‘ โ†’ (โ„ฉ๐‘ฅ โˆˆ โ„ค ๐œ‘) = -(โ„ฉ๐‘ฆ โˆˆ โ„ค ๐œ“))
 
Theoremsuprfinzcl 12698 The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.)
((๐ด โІ โ„ค โˆง ๐ด โ‰  โˆ… โˆง ๐ด โˆˆ Fin) โ†’ sup(๐ด, โ„, < ) โˆˆ ๐ด)
 
5.4.10  Decimal arithmetic
 
Syntaxcdc 12699 Constant used for decimal constructor.
class ๐ด๐ต
 
Definitiondf-dec 12700 Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (1000 + 2000) = 3000 1kp2ke3k 30243. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.)
๐ด๐ต = (((9 + 1) ยท ๐ด) + ๐ต)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48161
  Copyright terms: Public domain < Previous  Next >