Home | Metamath
Proof Explorer Theorem List (p. 127 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29276) |
Hilbert Space Explorer
(29277-30799) |
Users' Mathboxes
(30800-46482) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | uzneg 12601 | Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → -𝑀 ∈ (ℤ≥‘-𝑁)) | ||
Theorem | uzssz 12602 | An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (ℤ≥‘𝑀) ⊆ ℤ | ||
Theorem | uzssre 12603 | An upper set of integers is a subset of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (ℤ≥‘𝑀) ⊆ ℝ | ||
Theorem | uzss 12604 | Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | ||
Theorem | uztric 12605 | Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jun-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | ||
Theorem | uz11 12606 | The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005.) |
⊢ (𝑀 ∈ ℤ → ((ℤ≥‘𝑀) = (ℤ≥‘𝑁) ↔ 𝑀 = 𝑁)) | ||
Theorem | eluzp1m1 12607 | Membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzp1l 12608 | Strict ordering implied by membership in the next upper set of integers. (Contributed by NM, 12-Sep-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑁) | ||
Theorem | eluzp1p1 12609 | Membership in the next upper set of integers. (Contributed by NM, 5-Oct-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘(𝑀 + 1))) | ||
Theorem | eluzaddi 12610 | Membership in a later upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzsubi 12611 | Membership in an earlier upper set of integers. (Contributed by Paul Chapman, 22-Nov-2007.) |
⊢ 𝑀 ∈ ℤ & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾)) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | eluzadd 12612 | Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) | ||
Theorem | eluzsub 12613 | Membership in an earlier upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝑁 − 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | subeluzsub 12614 | Membership of a difference in an earlier upper set of integers. (Contributed by AV, 10-May-2022.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → (𝑀 − 𝐾) ∈ (ℤ≥‘(𝑀 − 𝑁))) | ||
Theorem | uzm1 12615 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) | ||
Theorem | uznn0sub 12616 | The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | ||
Theorem | uzin 12617 | Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ≥‘𝑀) ∩ (ℤ≥‘𝑁)) = (ℤ≥‘if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | ||
Theorem | uzp1 12618 | Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ 𝑁 ∈ (ℤ≥‘(𝑀 + 1)))) | ||
Theorem | nn0uz 12619 | Nonnegative integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ ℕ0 = (ℤ≥‘0) | ||
Theorem | nnuz 12620 | Positive integers expressed as an upper set of integers. (Contributed by NM, 2-Sep-2005.) |
⊢ ℕ = (ℤ≥‘1) | ||
Theorem | elnnuz 12621 | A positive integer expressed as a member of an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | ||
Theorem | elnn0uz 12622 | A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.) |
⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | ||
Theorem | eluz2nn 12623 | An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | ||
Theorem | eluz4eluz2 12624 | An integer greater than or equal to 4 is an integer greater than or equal to 2. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ (ℤ≥‘2)) | ||
Theorem | eluz4nn 12625 | An integer greater than or equal to 4 is a positive integer. (Contributed by AV, 30-May-2023.) |
⊢ (𝑋 ∈ (ℤ≥‘4) → 𝑋 ∈ ℕ) | ||
Theorem | eluzge2nn0 12626 | If an integer is greater than or equal to 2, then it is a nonnegative integer. (Contributed by AV, 27-Aug-2018.) (Proof shortened by AV, 3-Nov-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ0) | ||
Theorem | eluz2n0 12627 | An integer greater than or equal to 2 is not 0. (Contributed by AV, 25-May-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≠ 0) | ||
Theorem | uzuzle23 12628 | An integer in the upper set of integers starting at 3 is element of the upper set of integers starting at 2. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝐴 ∈ (ℤ≥‘3) → 𝐴 ∈ (ℤ≥‘2)) | ||
Theorem | eluzge3nn 12629 | If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) | ||
Theorem | uz3m2nn 12630 | An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn 12662. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑁 − 2) ∈ ℕ) | ||
Theorem | 1eluzge0 12631 | 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ 1 ∈ (ℤ≥‘0) | ||
Theorem | 2eluzge0 12632 | 2 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ 2 ∈ (ℤ≥‘0) | ||
Theorem | 2eluzge1 12633 | 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018.) |
⊢ 2 ∈ (ℤ≥‘1) | ||
Theorem | uznnssnn 12634 | The upper integers starting from a natural are a subset of the naturals. (Contributed by Scott Fenton, 29-Jun-2013.) |
⊢ (𝑁 ∈ ℕ → (ℤ≥‘𝑁) ⊆ ℕ) | ||
Theorem | raluz 12635* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
Theorem | raluz2 12636* | Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) | ||
Theorem | rexuz 12637* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (𝑀 ∈ ℤ → (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
Theorem | rexuz2 12638* | Restricted existential quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
⊢ (∃𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ (𝑀 ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝑀 ≤ 𝑛 ∧ 𝜑))) | ||
Theorem | 2rexuz 12639* | Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005.) |
⊢ (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)𝜑 ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝑚 ≤ 𝑛 ∧ 𝜑)) | ||
Theorem | peano2uz 12640 | Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | ||
Theorem | peano2uzs 12641 | Second Peano postulate for an upper set of integers. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) | ||
Theorem | peano2uzr 12642 | Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) | ||
Theorem | uzaddcl 12643 | Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.) |
⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) | ||
Theorem | nn0pzuz 12644 | The sum of a nonnegative integer and an integer is an integer greater than or equal to that integer. (Contributed by Alexander van der Vekens, 3-Oct-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑍 ∈ ℤ) → (𝑁 + 𝑍) ∈ (ℤ≥‘𝑍)) | ||
Theorem | uzind4 12645* | Induction on the upper set of integers that starts at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzind4ALT 12646* | Induction on the upper set of integers that starts at an integer 𝑀. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 12645 or uzind4ALT 12646 may be used; see comment for nnind 11991. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) & ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzind4s 12647* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005.) |
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑘]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜑 → [(𝑘 + 1) / 𝑘]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑘]𝜑) | ||
Theorem | uzind4s2 12648* | Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 12647 when 𝑗 and 𝑘 must be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM, 16-Nov-2005.) |
⊢ (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑) & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → ([𝑘 / 𝑗]𝜑 → [(𝑘 + 1) / 𝑗]𝜑)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → [𝑁 / 𝑗]𝜑) | ||
Theorem | uzind4i 12649* | Induction on the upper integers that start at 𝑀. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 12645 assuming that 𝜓 holds unconditionally. Notice that 𝑁 ∈ (ℤ≥‘𝑀) implies that the lower bound 𝑀 is an integer (𝑀 ∈ ℤ, see eluzel2 12586). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) ⇒ ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) | ||
Theorem | uzwo 12650* | Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
Theorem | uzwo2 12651* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃!𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | ||
Theorem | nnwo 12652* | Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of [Apostol] p. 34. (Contributed by NM, 17-Aug-2001.) |
⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | nnwof 12653* | Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | nnwos 12654* | Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓 → 𝑥 ≤ 𝑦))) | ||
Theorem | indstr 12655* | Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
Theorem | eluznn0 12656 | Membership in a nonnegative upper set of integers implies membership in ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) | ||
Theorem | eluznn 12657 | Membership in a positive upper set of integers implies membership in ℕ. (Contributed by JJ, 1-Oct-2018.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ) | ||
Theorem | eluz2b1 12658 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | ||
Theorem | eluz2gt1 12659 | An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) | ||
Theorem | eluz2b2 12660 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁)) | ||
Theorem | eluz2b3 12661 | Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | ||
Theorem | uz2m1nn 12662 | One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | ||
Theorem | 1nuz2 12663 | 1 is not in (ℤ≥‘2). (Contributed by Paul Chapman, 21-Nov-2012.) |
⊢ ¬ 1 ∈ (ℤ≥‘2) | ||
Theorem | elnn1uz2 12664 | A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ≥‘2))) | ||
Theorem | uz2mulcl 12665 | Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012.) |
⊢ ((𝑀 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑀 · 𝑁) ∈ (ℤ≥‘2)) | ||
Theorem | indstr2 12666* | Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.) |
⊢ (𝑥 = 1 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜒 & ⊢ (𝑥 ∈ (ℤ≥‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥 → 𝜓) → 𝜑)) ⇒ ⊢ (𝑥 ∈ ℕ → 𝜑) | ||
Theorem | uzinfi 12667 | Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005.) (Revised by AV, 4-Sep-2020.) |
⊢ 𝑀 ∈ ℤ ⇒ ⊢ inf((ℤ≥‘𝑀), ℝ, < ) = 𝑀 | ||
Theorem | nninf 12668 | The infimum of the set of positive integers is one. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(ℕ, ℝ, < ) = 1 | ||
Theorem | nn0inf 12669 | The infimum of the set of nonnegative integers is zero. (Contributed by NM, 16-Jun-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(ℕ0, ℝ, < ) = 0 | ||
Theorem | infssuzle 12670 | The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | ||
Theorem | infssuzcl 12671 | The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆) | ||
Theorem | ublbneg 12672* | The image under negation of a bounded-above set of reals is bounded below. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}𝑥 ≤ 𝑦) | ||
Theorem | eqreznegel 12673* | Two ways to express the image under negation of a set of integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝐴 ⊆ ℤ → {𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴} = {𝑧 ∈ ℤ ∣ -𝑧 ∈ 𝐴}) | ||
Theorem | supminf 12674* | The supremum of a bounded-above set of reals is the negation of the infimum of that set's image under negation. (Contributed by Paul Chapman, 21-Mar-2011.) ( Revised by AV, 13-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) = -inf({𝑧 ∈ ℝ ∣ -𝑧 ∈ 𝐴}, ℝ, < )) | ||
Theorem | lbzbi 12675* | If a set of reals is bounded below, it is bounded below by an integer. (Contributed by Paul Chapman, 21-Mar-2011.) |
⊢ (𝐴 ⊆ ℝ → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) | ||
Theorem | zsupss 12676* | Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 10950.) (Contributed by Mario Carneiro, 21-Apr-2015.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | suprzcl2 12677* | The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 12400 avoids ax-pre-sup 10950.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
Theorem | suprzub 12678* | The supremum of a bounded-above set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) |
⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < )) | ||
Theorem | uzsupss 12679* | Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 21-Apr-2015.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝑍 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ 𝑍 (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | nn01to3 12680 | A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3) → (𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3)) | ||
Theorem | nn0ge2m1nnALT 12681 | Alternate proof of nn0ge2m1nn 12302: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 12587, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 12302. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
Theorem | uzwo3 12682* | Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 12651 allows the lower bound 𝐵 to be any real number. See also nnwo 12652 and nnwos 12654. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ⊆ {𝑧 ∈ ℤ ∣ 𝐵 ≤ 𝑧} ∧ 𝐴 ≠ ∅)) → ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) | ||
Theorem | zmin 12683* | There is a unique smallest integer greater than or equal to a given real number. (Contributed by NM, 12-Nov-2004.) (Revised by Mario Carneiro, 13-Jun-2014.) |
⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ ∀𝑦 ∈ ℤ (𝐴 ≤ 𝑦 → 𝑥 ≤ 𝑦))) | ||
Theorem | zmax 12684* | There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) | ||
Theorem | zbtwnre 12685* | There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝐴 ≤ 𝑥 ∧ 𝑥 < (𝐴 + 1))) | ||
Theorem | rebtwnz 12686* | There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | ||
Syntax | cq 12687 | Extend class notation to include the class of rationals. |
class ℚ | ||
Definition | df-q 12688 | Define the set of rational numbers. Based on definition of rationals in [Apostol] p. 22. See elq 12689 for the relation "is rational". (Contributed by NM, 8-Jan-2002.) |
⊢ ℚ = ( / “ (ℤ × ℕ)) | ||
Theorem | elq 12689* | Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.) |
⊢ (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)) | ||
Theorem | qmulz 12690* | If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.) |
⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) | ||
Theorem | znq 12691 | The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ) | ||
Theorem | qre 12692 | A rational number is a real number. (Contributed by NM, 14-Nov-2002.) |
⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | ||
Theorem | zq 12693 | An integer is a rational number. (Contributed by NM, 9-Jan-2002.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | ||
Theorem | qred 12694 | A rational number is a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | zssq 12695 | The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.) |
⊢ ℤ ⊆ ℚ | ||
Theorem | nn0ssq 12696 | The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
⊢ ℕ0 ⊆ ℚ | ||
Theorem | nnssq 12697 | The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.) |
⊢ ℕ ⊆ ℚ | ||
Theorem | qssre 12698 | The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.) |
⊢ ℚ ⊆ ℝ | ||
Theorem | qsscn 12699 | The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
⊢ ℚ ⊆ ℂ | ||
Theorem | qex 12700 | The set of rational numbers exists. See also qexALT 12703. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ℚ ∈ V |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |