| Metamath
Proof Explorer Theorem List (p. 127 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 10nn 12601 | 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
| ⊢ ;10 ∈ ℕ | ||
| Theorem | 10pos 12602 | The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 0 < ;10 | ||
| Theorem | 10nn0 12603 | 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ ;10 ∈ ℕ0 | ||
| Theorem | 10re 12604 | The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| ⊢ ;10 ∈ ℝ | ||
| Theorem | decnncl 12605 | Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ ;𝐴𝐵 ∈ ℕ | ||
| Theorem | dec0u 12606 | Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (;10 · 𝐴) = ;𝐴0 | ||
| Theorem | dec0h 12607 | Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 = ;0𝐴 | ||
| Theorem | numnncl2 12608 | Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ | ||
| Theorem | decnncl2 12609 | Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ ;𝐴0 ∈ ℕ | ||
| Theorem | numlt 12610 | Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) | ||
| Theorem | numltc 12611 | Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) | ||
| Theorem | le9lt10 12612 | A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less than 10. (Contributed by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐴 ≤ 9 ⇒ ⊢ 𝐴 < ;10 | ||
| Theorem | declt 12613 | Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 | ||
| Theorem | decltc 12614 | Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < ;10 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 | ||
| Theorem | declth 12615 | Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 | ||
| Theorem | decsuc 12616 | The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶 & ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 | ||
| Theorem | 3declth 12617 | Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐸 ≤ 9 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | ||
| Theorem | 3decltc 12618 | Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 < ;10 & ⊢ 𝐸 < ;10 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | ||
| Theorem | decle 12619 | Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 | ||
| Theorem | decleh 12620 | Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 | ||
| Theorem | declei 12621 | Comparing a digit to a decimal integer. (Contributed by AV, 17-Aug-2021.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 ⇒ ⊢ 𝐶 ≤ ;𝐴𝐵 | ||
| Theorem | numlti 12622 | Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 ⇒ ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) | ||
| Theorem | declti 12623 | Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < ;10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 | ||
| Theorem | decltdi 12624 | Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 ⇒ ⊢ 𝐶 < ;𝐴𝐵 | ||
| Theorem | numsucc 12625 | The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑇 = (𝑌 + 1) & ⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) | ||
| Theorem | decsucc 12626 | The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 | ||
| Theorem | 1e0p1 12627 | The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 1 = (0 + 1) | ||
| Theorem | dec10p 12628 | Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (;10 + 𝐴) = ;1𝐴 | ||
| Theorem | numma 12629 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | nummac 12630 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | numma2c 12631 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | numadd 12632 | Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ (𝐴 + 𝐶) = 𝐸 & ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | numaddc 12633 | Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
| Theorem | nummul1c 12634 | The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) | ||
| Theorem | nummul2c 12635 | The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) | ||
| Theorem | decma 12636 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decmac 12637 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decma2c 12638 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decadd 12639 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ (𝐴 + 𝐶) = 𝐸 & ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decaddc 12640 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decaddc2 12641 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 | ||
| Theorem | decrmanc 12642 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decrmac 12643 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
| Theorem | decaddm10 12644 | The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 | ||
| Theorem | decaddi 12645 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 | ||
| Theorem | decaddci 12646 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 | ||
| Theorem | decaddci2 12647 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 | ||
| Theorem | decsubi 12648 | Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 | ||
| Theorem | decmul1 12649 | The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis 𝐷 ∈ ℕ0. (Revised by Steven Nguyen, 7-Dec-2022.) |
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ (𝐴 · 𝑃) = 𝐶 & ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
| Theorem | decmul1c 12650 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
| Theorem | decmul2c 12651 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 | ||
| Theorem | decmulnc 12652 | The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;𝐴𝐵) = ;(𝑁 · 𝐴)(𝑁 · 𝐵) | ||
| Theorem | 11multnc 12653 | The product of 11 (as numeral) with a number (no carry). (Contributed by AV, 15-Jun-2021.) |
| ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 · ;11) = ;𝑁𝑁 | ||
| Theorem | decmul10add 12654 | A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑀 ∈ ℕ0 & ⊢ 𝐸 = (𝑀 · 𝐴) & ⊢ 𝐹 = (𝑀 · 𝐵) ⇒ ⊢ (𝑀 · ;𝐴𝐵) = (;𝐸0 + 𝐹) | ||
| Theorem | 6p5lem 12655 | Lemma for 6p5e11 12658 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐵 = (𝐷 + 1) & ⊢ 𝐶 = (𝐸 + 1) & ⊢ (𝐴 + 𝐷) = ;1𝐸 ⇒ ⊢ (𝐴 + 𝐵) = ;1𝐶 | ||
| Theorem | 5p5e10 12656 | 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 + 5) = ;10 | ||
| Theorem | 6p4e10 12657 | 6 + 4 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 + 4) = ;10 | ||
| Theorem | 6p5e11 12658 | 6 + 5 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 + 5) = ;11 | ||
| Theorem | 6p6e12 12659 | 6 + 6 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 + 6) = ;12 | ||
| Theorem | 7p3e10 12660 | 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (7 + 3) = ;10 | ||
| Theorem | 7p4e11 12661 | 7 + 4 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (7 + 4) = ;11 | ||
| Theorem | 7p5e12 12662 | 7 + 5 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 + 5) = ;12 | ||
| Theorem | 7p6e13 12663 | 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 + 6) = ;13 | ||
| Theorem | 7p7e14 12664 | 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 + 7) = ;14 | ||
| Theorem | 8p2e10 12665 | 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 + 2) = ;10 | ||
| Theorem | 8p3e11 12666 | 8 + 3 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (8 + 3) = ;11 | ||
| Theorem | 8p4e12 12667 | 8 + 4 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 4) = ;12 | ||
| Theorem | 8p5e13 12668 | 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 5) = ;13 | ||
| Theorem | 8p6e14 12669 | 8 + 6 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 6) = ;14 | ||
| Theorem | 8p7e15 12670 | 8 + 7 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 7) = ;15 | ||
| Theorem | 8p8e16 12671 | 8 + 8 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 + 8) = ;16 | ||
| Theorem | 9p2e11 12672 | 9 + 2 = 11. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (9 + 2) = ;11 | ||
| Theorem | 9p3e12 12673 | 9 + 3 = 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 3) = ;12 | ||
| Theorem | 9p4e13 12674 | 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 4) = ;13 | ||
| Theorem | 9p5e14 12675 | 9 + 5 = 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 5) = ;14 | ||
| Theorem | 9p6e15 12676 | 9 + 6 = 15. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 6) = ;15 | ||
| Theorem | 9p7e16 12677 | 9 + 7 = 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 7) = ;16 | ||
| Theorem | 9p8e17 12678 | 9 + 8 = 17. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 8) = ;17 | ||
| Theorem | 9p9e18 12679 | 9 + 9 = 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (9 + 9) = ;18 | ||
| Theorem | 10p10e20 12680 | 10 + 10 = 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (;10 + ;10) = ;20 | ||
| Theorem | 10m1e9 12681 | 10 - 1 = 9. (Contributed by AV, 6-Sep-2021.) |
| ⊢ (;10 − 1) = 9 | ||
| Theorem | 4t3lem 12682 | Lemma for 4t3e12 12683 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 = (𝐵 + 1) & ⊢ (𝐴 · 𝐵) = 𝐷 & ⊢ (𝐷 + 𝐴) = 𝐸 ⇒ ⊢ (𝐴 · 𝐶) = 𝐸 | ||
| Theorem | 4t3e12 12683 | 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 3) = ;12 | ||
| Theorem | 4t4e16 12684 | 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (4 · 4) = ;16 | ||
| Theorem | 5t2e10 12685 | 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
| ⊢ (5 · 2) = ;10 | ||
| Theorem | 5t3e15 12686 | 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 3) = ;15 | ||
| Theorem | 5t4e20 12687 | 5 times 4 equals 20. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 4) = ;20 | ||
| Theorem | 5t5e25 12688 | 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (5 · 5) = ;25 | ||
| Theorem | 6t2e12 12689 | 6 times 2 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 2) = ;12 | ||
| Theorem | 6t3e18 12690 | 6 times 3 equals 18. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 3) = ;18 | ||
| Theorem | 6t4e24 12691 | 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (6 · 4) = ;24 | ||
| Theorem | 6t5e30 12692 | 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 5) = ;30 | ||
| Theorem | 6t6e36 12693 | 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| ⊢ (6 · 6) = ;36 | ||
| Theorem | 7t2e14 12694 | 7 times 2 equals 14. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 2) = ;14 | ||
| Theorem | 7t3e21 12695 | 7 times 3 equals 21. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 3) = ;21 | ||
| Theorem | 7t4e28 12696 | 7 times 4 equals 28. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 4) = ;28 | ||
| Theorem | 7t5e35 12697 | 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 5) = ;35 | ||
| Theorem | 7t6e42 12698 | 7 times 6 equals 42. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 6) = ;42 | ||
| Theorem | 7t7e49 12699 | 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (7 · 7) = ;49 | ||
| Theorem | 8t2e16 12700 | 8 times 2 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ (8 · 2) = ;16 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |