![]() |
Metamath
Proof Explorer Theorem List (p. 127 of 485) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30800) |
![]() (30801-32323) |
![]() (32324-48421) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | elnnz 12601 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | ||
Theorem | 0z 12602 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
⊢ 0 ∈ ℤ | ||
Theorem | 0zd 12603 | Zero is an integer, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 0 ∈ ℤ) | ||
Theorem | elnn0z 12604 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
Theorem | elznn0nn 12605 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
Theorem | elznn0 12606 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | elznn 12607 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | zle0orge1 12608 | There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1. (Contributed by AV, 4-Jun-2023.) |
⊢ (𝑍 ∈ ℤ → (𝑍 ≤ 0 ∨ 1 ≤ 𝑍)) | ||
Theorem | elz2 12609* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) | ||
Theorem | dfz2 12610 | Alternative definition of the integers, based on elz2 12609. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ ℤ = ( − “ (ℕ × ℕ)) | ||
Theorem | zexALT 12611 | Alternate proof of zex 12600. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℤ ∈ V | ||
Theorem | nnz 12612 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
Theorem | nnssz 12613 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) |
⊢ ℕ ⊆ ℤ | ||
Theorem | nn0ssz 12614 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
⊢ ℕ0 ⊆ ℤ | ||
Theorem | nnzOLD 12615 | Obsolete version of nnz 12612 as of 1-Feb-2025. (Contributed by NM, 9-May-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
Theorem | nn0z 12616 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | ||
Theorem | nn0zd 12617 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
Theorem | nnzd 12618 | A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
Theorem | nnzi 12619 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℤ | ||
Theorem | nn0zi 12620 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ∈ ℤ | ||
Theorem | elnnz1 12621 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | ||
Theorem | znnnlt1 12622 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) | ||
Theorem | nnzrab 12623 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥} | ||
Theorem | nn0zrab 12624 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ℕ0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥} | ||
Theorem | 1z 12625 | One is an integer. (Contributed by NM, 10-May-2004.) |
⊢ 1 ∈ ℤ | ||
Theorem | 1zzd 12626 | One is an integer, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 1 ∈ ℤ) | ||
Theorem | 2z 12627 | 2 is an integer. (Contributed by NM, 10-May-2004.) |
⊢ 2 ∈ ℤ | ||
Theorem | 3z 12628 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 3 ∈ ℤ | ||
Theorem | 4z 12629 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
⊢ 4 ∈ ℤ | ||
Theorem | znegcl 12630 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | ||
Theorem | neg1z 12631 | -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ -1 ∈ ℤ | ||
Theorem | znegclb 12632 | A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ)) | ||
Theorem | nn0negz 12633 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | ||
Theorem | nn0negzi 12634 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ -𝑁 ∈ ℤ | ||
Theorem | zaddcl 12635 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | ||
Theorem | peano2z 12636 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | ||
Theorem | zsubcl 12637 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | ||
Theorem | peano2zm 12638 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | ||
Theorem | zletr 12639 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | ||
Theorem | zrevaddcl 12640 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) | ||
Theorem | znnsub 12641 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 12289.) (Contributed by NM, 11-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | ||
Theorem | znn0sub 12642 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 12555.) (Contributed by NM, 14-Jul-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
Theorem | nzadd 12643 | The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) | ||
Theorem | zmulcl 12644 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | ||
Theorem | zltp1le 12645 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
Theorem | zleltp1 12646 | Integer ordering relation. (Contributed by NM, 10-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
Theorem | zlem1lt 12647 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
Theorem | zltlem1 12648 | Integer ordering relation. (Contributed by NM, 13-Nov-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
Theorem | zgt0ge1 12649 | An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.) |
⊢ (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍)) | ||
Theorem | nnleltp1 12650 | Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 ≤ 𝐵 ↔ 𝐴 < (𝐵 + 1))) | ||
Theorem | nnltp1le 12651 | Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐴 + 1) ≤ 𝐵)) | ||
Theorem | nnaddm1cl 12652 | Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 𝐵) − 1) ∈ ℕ) | ||
Theorem | nn0ltp1le 12653 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
Theorem | nn0leltp1 12654 | Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 < (𝑁 + 1))) | ||
Theorem | nn0ltlem1 12655 | Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
Theorem | nn0sub2 12656 | Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ≤ 𝑁) → (𝑁 − 𝑀) ∈ ℕ0) | ||
Theorem | nn0lt10b 12657 | A nonnegative integer less than 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | ||
Theorem | nn0lt2 12658 | A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) | ||
Theorem | nn0le2is012 12659 | A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 2) → (𝑁 = 0 ∨ 𝑁 = 1 ∨ 𝑁 = 2)) | ||
Theorem | nn0lem1lt 12660 | Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
Theorem | nnlem1lt 12661 | Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | ||
Theorem | nnltlem1 12662 | Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | ||
Theorem | nnm1ge0 12663 | A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.) |
⊢ (𝑁 ∈ ℕ → 0 ≤ (𝑁 − 1)) | ||
Theorem | nn0ge0div 12664 | Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿)) | ||
Theorem | zdiv 12665* | Two ways to express "𝑀 divides 𝑁". (Contributed by NM, 3-Oct-2008.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) | ||
Theorem | zdivadd 12666 | Property of divisibility: if 𝐷 divides 𝐴 and 𝐵 then it divides 𝐴 + 𝐵. (Contributed by NM, 3-Oct-2008.) |
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((𝐴 / 𝐷) ∈ ℤ ∧ (𝐵 / 𝐷) ∈ ℤ)) → ((𝐴 + 𝐵) / 𝐷) ∈ ℤ) | ||
Theorem | zdivmul 12667 | Property of divisibility: if 𝐷 divides 𝐴 then it divides 𝐵 · 𝐴. (Contributed by NM, 3-Oct-2008.) |
⊢ (((𝐷 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐴 / 𝐷) ∈ ℤ) → ((𝐵 · 𝐴) / 𝐷) ∈ ℤ) | ||
Theorem | zextle 12668* | An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ 𝑀 ↔ 𝑘 ≤ 𝑁)) → 𝑀 = 𝑁) | ||
Theorem | zextlt 12669* | An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) | ||
Theorem | recnz 12670 | The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) | ||
Theorem | btwnnz 12671 | A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 < 𝐵 ∧ 𝐵 < (𝐴 + 1)) → ¬ 𝐵 ∈ ℤ) | ||
Theorem | gtndiv 12672 | A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 𝐵 < 𝐴) → ¬ (𝐵 / 𝐴) ∈ ℤ) | ||
Theorem | halfnz 12673 | One-half is not an integer. (Contributed by NM, 31-Jul-2004.) |
⊢ ¬ (1 / 2) ∈ ℤ | ||
Theorem | 3halfnz 12674 | Three halves is not an integer. (Contributed by AV, 2-Jun-2020.) |
⊢ ¬ (3 / 2) ∈ ℤ | ||
Theorem | suprzcl 12675* | The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
Theorem | prime 12676* | Two ways to express "𝐴 is a prime number (or 1)". See also isprm 16647. (Contributed by NM, 4-May-2005.) |
⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | ||
Theorem | msqznn 12677 | The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴 · 𝐴) ∈ ℕ) | ||
Theorem | zneo 12678 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) | ||
Theorem | nneo 12679 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
Theorem | nneoi 12680 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) |
⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ) | ||
Theorem | zeo 12681 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
Theorem | zeo2 12682 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
Theorem | peano2uz2 12683* | Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) | ||
Theorem | peano5uzi 12684* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.) |
⊢ 𝑁 ∈ ℤ ⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) | ||
Theorem | peano5uzti 12685* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) | ||
Theorem | dfuzi 12686* | An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 12258 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
⊢ 𝑁 ∈ ℤ ⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
Theorem | uzind 12687* | Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) | ||
Theorem | uzind2 12688* | Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) | ||
Theorem | uzind3 12689* | Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) | ||
Theorem | nn0ind 12690* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | nn0indALT 12691* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 12690 or nn0indALT 12691 may be used; see comment for nnind 12263. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | nn0indd 12692* | Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ (𝑥 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → 𝜂) | ||
Theorem | fzind 12693* | Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) & ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) | ||
Theorem | fnn0ind 12694* | Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0 → 𝜓) & ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) → 𝜏) | ||
Theorem | nn0ind-raph 12695* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | zindd 12696* | Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓) & ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) | ||
Theorem | fzindd 12697* | Induction on the integers from M to N inclusive, a deduction version. (Contributed by metakunt, 12-May-2024.) |
⊢ (𝑥 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁) ∧ 𝜃) → 𝜏) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁)) → 𝜂) | ||
Theorem | btwnz 12698* | Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) | ||
Theorem | zred 12699 | An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | zcnd 12700 | An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |