MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deceq1i Structured version   Visualization version   GIF version

Theorem deceq1i 12663
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypothesis
Ref Expression
deceq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
deceq1i 𝐴𝐶 = 𝐵𝐶

Proof of Theorem deceq1i
StepHypRef Expression
1 deceq1i.1 . 2 𝐴 = 𝐵
2 deceq1 12661 . 2 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
31, 2ax-mp 5 1 𝐴𝐶 = 𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdc 12656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-dec 12657
This theorem is referenced by:  deceq12i  12665  decmul10add  12725  1mhdrd  32843  hgt750lem2  34650  sqn5ii  42281  fmtno5lem4  47561  fmtno5fac  47587
  Copyright terms: Public domain W3C validator