Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deceq1i | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
deceq1i | ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deceq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | deceq1 12371 | . 2 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-dec 12367 |
This theorem is referenced by: deceq12i 12375 decmul10add 12435 1mhdrd 31092 hgt750lem2 32532 sqn5ii 40235 fmtno5lem4 44896 fmtno5fac 44922 |
Copyright terms: Public domain | W3C validator |