| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| deceq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| deceq1i | ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deceq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | deceq1 12713 | . 2 ⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ;cdc 12708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-dec 12709 |
| This theorem is referenced by: deceq12i 12717 decmul10add 12777 1mhdrd 32890 hgt750lem2 34684 sqn5ii 42336 fmtno5lem4 47570 fmtno5fac 47596 |
| Copyright terms: Public domain | W3C validator |