MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deceq1i Structured version   Visualization version   GIF version

Theorem deceq1i 12632
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypothesis
Ref Expression
deceq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
deceq1i 𝐴𝐶 = 𝐵𝐶

Proof of Theorem deceq1i
StepHypRef Expression
1 deceq1i.1 . 2 𝐴 = 𝐵
2 deceq1 12630 . 2 (𝐴 = 𝐵𝐴𝐶 = 𝐵𝐶)
31, 2ax-mp 5 1 𝐴𝐶 = 𝐵𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdc 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-dec 12626
This theorem is referenced by:  deceq12i  12634  decmul10add  12694  1mhdrd  32809  hgt750lem2  34616  sqn5ii  42247  fmtno5lem4  47530  fmtno5fac  47556
  Copyright terms: Public domain W3C validator