MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decex Structured version   Visualization version   GIF version

Theorem decex 12735
Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
decex 𝐴𝐵 ∈ V

Proof of Theorem decex
StepHypRef Expression
1 df-dec 12732 . 2 𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
21ovexi 7465 1 𝐴𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  (class class class)co 7431  1c1 11154   + caddc 11156   · cmul 11158  9c9 12326  cdc 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634  df-uni 4913  df-iota 6516  df-fv 6571  df-ov 7434  df-dec 12732
This theorem is referenced by:  nfermltl2rev  47668
  Copyright terms: Public domain W3C validator