MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decex Structured version   Visualization version   GIF version

Theorem decex 12623
Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
decex ๐ด๐ต โˆˆ V

Proof of Theorem decex
StepHypRef Expression
1 df-dec 12620 . 2 ๐ด๐ต = (((9 + 1) ยท ๐ด) + ๐ต)
21ovexi 7392 1 ๐ด๐ต โˆˆ V
Colors of variables: wff setvar class
Syntax hints:   โˆˆ wcel 2107  Vcvv 3446  (class class class)co 7358  1c1 11053   + caddc 11055   ยท cmul 11057  9c9 12216  cdc 12619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-nul 5264
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-sn 4588  df-pr 4590  df-uni 4867  df-iota 6449  df-fv 6505  df-ov 7361  df-dec 12620
This theorem is referenced by:  nfermltl2rev  45942
  Copyright terms: Public domain W3C validator