![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decex | Structured version Visualization version GIF version |
Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decex | ⊢ ;𝐴𝐵 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12759 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
2 | 1 | ovexi 7482 | 1 ⊢ ;𝐴𝐵 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 9c9 12355 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-fv 6581 df-ov 7451 df-dec 12759 |
This theorem is referenced by: nfermltl2rev 47617 |
Copyright terms: Public domain | W3C validator |