MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decex Structured version   Visualization version   GIF version

Theorem decex 12126
Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
decex 𝐴𝐵 ∈ V

Proof of Theorem decex
StepHypRef Expression
1 df-dec 12123 . 2 𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
21ovexi 7177 1 𝐴𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2112  Vcvv 3407  (class class class)co 7143  1c1 10561   + caddc 10563   · cmul 10565  9c9 11721  cdc 12122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-nul 5169
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3073  df-rex 3074  df-v 3409  df-sbc 3694  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-sn 4516  df-pr 4518  df-uni 4792  df-iota 6287  df-fv 6336  df-ov 7146  df-dec 12123
This theorem is referenced by:  nfermltl2rev  44613
  Copyright terms: Public domain W3C validator