MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decex Structured version   Visualization version   GIF version

Theorem decex 12721
Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
decex 𝐴𝐵 ∈ V

Proof of Theorem decex
StepHypRef Expression
1 df-dec 12718 . 2 𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
21ovexi 7448 1 𝐴𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3464  (class class class)co 7414  1c1 11139   + caddc 11141   · cmul 11143  9c9 12311  cdc 12717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5288
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-sn 4609  df-pr 4611  df-uni 4890  df-iota 6495  df-fv 6550  df-ov 7417  df-dec 12718
This theorem is referenced by:  nfermltl2rev  47676
  Copyright terms: Public domain W3C validator