| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decex | Structured version Visualization version GIF version | ||
| Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decex | ⊢ ;𝐴𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12626 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 1 | ovexi 7403 | 1 ⊢ ;𝐴𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 (class class class)co 7369 1c1 11045 + caddc 11047 · cmul 11049 9c9 12224 ;cdc 12625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-fv 6507 df-ov 7372 df-dec 12626 |
| This theorem is referenced by: nfermltl2rev 47717 |
| Copyright terms: Public domain | W3C validator |