MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decex Structured version   Visualization version   GIF version

Theorem decex 12680
Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
decex ๐ด๐ต โˆˆ V

Proof of Theorem decex
StepHypRef Expression
1 df-dec 12677 . 2 ๐ด๐ต = (((9 + 1) ยท ๐ด) + ๐ต)
21ovexi 7442 1 ๐ด๐ต โˆˆ V
Colors of variables: wff setvar class
Syntax hints:   โˆˆ wcel 2106  Vcvv 3474  (class class class)co 7408  1c1 11110   + caddc 11112   ยท cmul 11114  9c9 12273  cdc 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495  df-fv 6551  df-ov 7411  df-dec 12677
This theorem is referenced by:  nfermltl2rev  46401
  Copyright terms: Public domain W3C validator