| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decex | Structured version Visualization version GIF version | ||
| Description: A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decex | ⊢ ;𝐴𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12718 | . 2 ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | |
| 2 | 1 | ovexi 7448 | 1 ⊢ ;𝐴𝐵 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3464 (class class class)co 7414 1c1 11139 + caddc 11141 · cmul 11143 9c9 12311 ;cdc 12717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5288 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-sn 4609 df-pr 4611 df-uni 4890 df-iota 6495 df-fv 6550 df-ov 7417 df-dec 12718 |
| This theorem is referenced by: nfermltl2rev 47676 |
| Copyright terms: Public domain | W3C validator |