Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deceq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
deceq2 | ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7163 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐶) + 𝐴) = (((9 + 1) · 𝐶) + 𝐵)) | |
2 | df-dec 12143 | . 2 ⊢ ;𝐶𝐴 = (((9 + 1) · 𝐶) + 𝐴) | |
3 | df-dec 12143 | . 2 ⊢ ;𝐶𝐵 = (((9 + 1) · 𝐶) + 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2818 | 1 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 (class class class)co 7155 1c1 10581 + caddc 10583 · cmul 10585 9c9 11741 ;cdc 12142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-iota 6298 df-fv 6347 df-ov 7158 df-dec 12143 |
This theorem is referenced by: deceq2i 12150 |
Copyright terms: Public domain | W3C validator |