| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deceq2 | ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7440 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐶) + 𝐴) = (((9 + 1) · 𝐶) + 𝐵)) | |
| 2 | df-dec 12736 | . 2 ⊢ ;𝐶𝐴 = (((9 + 1) · 𝐶) + 𝐴) | |
| 3 | df-dec 12736 | . 2 ⊢ ;𝐶𝐵 = (((9 + 1) · 𝐶) + 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2801 | 1 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 (class class class)co 7432 1c1 11157 + caddc 11159 · cmul 11161 9c9 12329 ;cdc 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-dec 12736 |
| This theorem is referenced by: deceq2i 12743 |
| Copyright terms: Public domain | W3C validator |