| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| deceq2 | ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . 2 ⊢ (𝐴 = 𝐵 → (((9 + 1) · 𝐶) + 𝐴) = (((9 + 1) · 𝐶) + 𝐵)) | |
| 2 | df-dec 12650 | . 2 ⊢ ;𝐶𝐴 = (((9 + 1) · 𝐶) + 𝐴) | |
| 3 | df-dec 12650 | . 2 ⊢ ;𝐶𝐵 = (((9 + 1) · 𝐶) + 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 · cmul 11073 9c9 12248 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-dec 12650 |
| This theorem is referenced by: deceq2i 12657 |
| Copyright terms: Public domain | W3C validator |