| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq12i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| deceq1i.1 | ⊢ 𝐴 = 𝐵 |
| deceq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| deceq12i | ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deceq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | deceq1i 12672 | . 2 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
| 3 | deceq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 4 | 3 | deceq2i 12673 | . 2 ⊢ ;𝐵𝐶 = ;𝐵𝐷 |
| 5 | 2, 4 | eqtri 2753 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ;cdc 12665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-iota 6472 df-fv 6527 df-ov 7397 df-dec 12666 |
| This theorem is referenced by: 11multnc 12733 2exp340mod341 47689 |
| Copyright terms: Public domain | W3C validator |