![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deceq12i | Structured version Visualization version GIF version |
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
deceq1i.1 | ⊢ 𝐴 = 𝐵 |
deceq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
deceq12i | ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deceq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | deceq1i 12730 | . 2 ⊢ ;𝐴𝐶 = ;𝐵𝐶 |
3 | deceq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | deceq2i 12731 | . 2 ⊢ ;𝐵𝐶 = ;𝐵𝐷 |
5 | 2, 4 | eqtri 2754 | 1 ⊢ ;𝐴𝐶 = ;𝐵𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ;cdc 12723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-iota 6498 df-fv 6554 df-ov 7419 df-dec 12724 |
This theorem is referenced by: 11multnc 12791 2exp340mod341 47341 |
Copyright terms: Public domain | W3C validator |