MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deceq12i Structured version   Visualization version   GIF version

Theorem deceq12i 12686
Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
deceq1i.1 𝐴 = 𝐵
deceq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
deceq12i 𝐴𝐶 = 𝐵𝐷

Proof of Theorem deceq12i
StepHypRef Expression
1 deceq1i.1 . . 3 𝐴 = 𝐵
21deceq1i 12684 . 2 𝐴𝐶 = 𝐵𝐶
3 deceq12i.2 . . 3 𝐶 = 𝐷
43deceq2i 12685 . 2 𝐵𝐶 = 𝐵𝐷
52, 4eqtri 2761 1 𝐴𝐶 = 𝐵𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cdc 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-dec 12678
This theorem is referenced by:  11multnc  12745  2exp340mod341  46401
  Copyright terms: Public domain W3C validator