| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deceq2i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| deceq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| deceq2i | ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deceq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | deceq2 12723 | . 2 ⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ;𝐶𝐴 = ;𝐶𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ;cdc 12717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-iota 6495 df-fv 6550 df-ov 7417 df-dec 12718 |
| This theorem is referenced by: deceq12i 12726 sqn5i 42265 |
| Copyright terms: Public domain | W3C validator |