Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2exp340mod341 Structured version   Visualization version   GIF version

Theorem 2exp340mod341 45243
Description: Eight to the eighth power modulo nine is one. (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
2exp340mod341 ((2↑340) mod 341) = 1

Proof of Theorem 2exp340mod341
StepHypRef Expression
1 3nn0 12297 . . . . 5 3 ∈ ℕ0
2 4nn0 12298 . . . . 5 4 ∈ ℕ0
31, 2deccl 12498 . . . 4 34 ∈ ℕ0
4 1nn 12030 . . . 4 1 ∈ ℕ
53, 4decnncl 12503 . . 3 341 ∈ ℕ
6 2nn 12092 . . 3 2 ∈ ℕ
7 1nn0 12295 . . . . 5 1 ∈ ℕ0
8 7nn0 12301 . . . . 5 7 ∈ ℕ0
97, 8deccl 12498 . . . 4 17 ∈ ℕ0
10 0nn0 12294 . . . 4 0 ∈ ℕ0
119, 10deccl 12498 . . 3 170 ∈ ℕ0
12 0z 12376 . . 3 0 ∈ ℤ
13 8nn0 12302 . . . . 5 8 ∈ ℕ0
14 5nn0 12299 . . . . 5 5 ∈ ℕ0
1513, 14deccl 12498 . . . 4 85 ∈ ℕ0
16 3z 12399 . . . 4 3 ∈ ℤ
17 2nn0 12296 . . . . 5 2 ∈ ℕ0
181, 17deccl 12498 . . . 4 32 ∈ ℕ0
1913, 2deccl 12498 . . . . 5 84 ∈ ℕ0
20 6nn0 12300 . . . . . 6 6 ∈ ℕ0
217, 20deccl 12498 . . . . 5 16 ∈ ℕ0
222, 17deccl 12498 . . . . . 6 42 ∈ ℕ0
2317, 7deccl 12498 . . . . . . 7 21 ∈ ℕ0
2417, 10deccl 12498 . . . . . . . 8 20 ∈ ℕ0
257, 10deccl 12498 . . . . . . . . 9 10 ∈ ℕ0
26 2exp5 16832 . . . . . . . . . . 11 (2↑5) = 32
2726oveq1i 7317 . . . . . . . . . 10 ((2↑5) mod 341) = (32 mod 341)
28 5cn 12107 . . . . . . . . . . 11 5 ∈ ℂ
29 2cn 12094 . . . . . . . . . . 11 2 ∈ ℂ
30 5t2e10 12583 . . . . . . . . . . 11 (5 · 2) = 10
3128, 29, 30mulcomli 11030 . . . . . . . . . 10 (2 · 5) = 10
3225, 17deccl 12498 . . . . . . . . . . . 12 102 ∈ ℕ0
33 3p1e4 12164 . . . . . . . . . . . 12 (3 + 1) = 4
34 eqid 2736 . . . . . . . . . . . 12 1023 = 1023
3532, 1, 33, 34decsuc 12514 . . . . . . . . . . 11 (1023 + 1) = 1024
361, 3, 7decmulnc 12550 . . . . . . . . . . . . 13 (3 · 341) = (3 · 34)(3 · 1)
37 eqid 2736 . . . . . . . . . . . . . . 15 34 = 34
38 3t3e9 12186 . . . . . . . . . . . . . . . . 17 (3 · 3) = 9
3938oveq1i 7317 . . . . . . . . . . . . . . . 16 ((3 · 3) + 1) = (9 + 1)
40 9p1e10 12485 . . . . . . . . . . . . . . . 16 (9 + 1) = 10
4139, 40eqtri 2764 . . . . . . . . . . . . . . 15 ((3 · 3) + 1) = 10
42 4cn 12104 . . . . . . . . . . . . . . . 16 4 ∈ ℂ
43 3cn 12100 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
44 4t3e12 12581 . . . . . . . . . . . . . . . 16 (4 · 3) = 12
4542, 43, 44mulcomli 11030 . . . . . . . . . . . . . . 15 (3 · 4) = 12
461, 1, 2, 37, 17, 7, 41, 45decmul2c 12549 . . . . . . . . . . . . . 14 (3 · 34) = 102
4743mulid1i 11025 . . . . . . . . . . . . . 14 (3 · 1) = 3
4846, 47deceq12i 12492 . . . . . . . . . . . . 13 (3 · 34)(3 · 1) = 1023
4936, 48eqtri 2764 . . . . . . . . . . . 12 (3 · 341) = 1023
5049oveq1i 7317 . . . . . . . . . . 11 ((3 · 341) + 1) = (1023 + 1)
51 eqid 2736 . . . . . . . . . . . 12 32 = 32
521, 1, 17decmulnc 12550 . . . . . . . . . . . . . 14 (3 · 32) = (3 · 3)(3 · 2)
5352oveq1i 7317 . . . . . . . . . . . . 13 ((3 · 32) + 6) = ((3 · 3)(3 · 2) + 6)
54 9nn0 12303 . . . . . . . . . . . . . 14 9 ∈ ℕ0
55 3t2e6 12185 . . . . . . . . . . . . . . 15 (3 · 2) = 6
5638, 55deceq12i 12492 . . . . . . . . . . . . . 14 (3 · 3)(3 · 2) = 96
57 6p6e12 12557 . . . . . . . . . . . . . 14 (6 + 6) = 12
5854, 20, 20, 56, 40, 17, 57decaddci 12544 . . . . . . . . . . . . 13 ((3 · 3)(3 · 2) + 6) = 102
5953, 58eqtri 2764 . . . . . . . . . . . 12 ((3 · 32) + 6) = 102
6017, 1, 17decmulnc 12550 . . . . . . . . . . . . 13 (2 · 32) = (2 · 3)(2 · 2)
6143, 29, 55mulcomli 11030 . . . . . . . . . . . . . 14 (2 · 3) = 6
62 2t2e4 12183 . . . . . . . . . . . . . 14 (2 · 2) = 4
6361, 62deceq12i 12492 . . . . . . . . . . . . 13 (2 · 3)(2 · 2) = 64
6460, 63eqtri 2764 . . . . . . . . . . . 12 (2 · 32) = 64
6518, 1, 17, 51, 2, 20, 59, 64decmul1c 12548 . . . . . . . . . . 11 (32 · 32) = 1024
6635, 50, 653eqtr4i 2774 . . . . . . . . . 10 ((3 · 341) + 1) = (32 · 32)
675, 6, 14, 16, 18, 7, 27, 31, 66mod2xi 16815 . . . . . . . . 9 ((2↑10) mod 341) = (1 mod 341)
6817, 7, 10decmulnc 12550 . . . . . . . . . 10 (2 · 10) = (2 · 1)(2 · 0)
6929mulid1i 11025 . . . . . . . . . . 11 (2 · 1) = 2
70 2t0e0 12188 . . . . . . . . . . 11 (2 · 0) = 0
7169, 70deceq12i 12492 . . . . . . . . . 10 (2 · 1)(2 · 0) = 20
7268, 71eqtri 2764 . . . . . . . . 9 (2 · 10) = 20
73 0p1e1 12141 . . . . . . . . . 10 (0 + 1) = 1
745nncni 12029 . . . . . . . . . . . 12 341 ∈ ℂ
7574mul02i 11210 . . . . . . . . . . 11 (0 · 341) = 0
7675oveq1i 7317 . . . . . . . . . 10 ((0 · 341) + 1) = (0 + 1)
77 1t1e1 12181 . . . . . . . . . 10 (1 · 1) = 1
7873, 76, 773eqtr4i 2774 . . . . . . . . 9 ((0 · 341) + 1) = (1 · 1)
795, 6, 25, 12, 7, 7, 67, 72, 78mod2xi 16815 . . . . . . . 8 ((2↑20) mod 341) = (1 mod 341)
80 eqid 2736 . . . . . . . . 9 20 = 20
8117, 10, 73, 80decsuc 12514 . . . . . . . 8 (20 + 1) = 21
8229addid2i 11209 . . . . . . . . 9 (0 + 2) = 2
8375oveq1i 7317 . . . . . . . . 9 ((0 · 341) + 2) = (0 + 2)
8429mulid2i 11026 . . . . . . . . 9 (1 · 2) = 2
8582, 83, 843eqtr4i 2774 . . . . . . . 8 ((0 · 341) + 2) = (1 · 2)
865, 6, 24, 12, 7, 17, 79, 81, 85modxp1i 16816 . . . . . . 7 ((2↑21) mod 341) = (2 mod 341)
8717, 17, 7decmulnc 12550 . . . . . . . 8 (2 · 21) = (2 · 2)(2 · 1)
8862, 69deceq12i 12492 . . . . . . . 8 (2 · 2)(2 · 1) = 42
8987, 88eqtri 2764 . . . . . . 7 (2 · 21) = 42
9042addid2i 11209 . . . . . . . 8 (0 + 4) = 4
9175oveq1i 7317 . . . . . . . 8 ((0 · 341) + 4) = (0 + 4)
9290, 91, 623eqtr4i 2774 . . . . . . 7 ((0 · 341) + 4) = (2 · 2)
935, 6, 23, 12, 17, 2, 86, 89, 92mod2xi 16815 . . . . . 6 ((2↑42) mod 341) = (4 mod 341)
9417, 2, 17decmulnc 12550 . . . . . . 7 (2 · 42) = (2 · 4)(2 · 2)
95 4t2e8 12187 . . . . . . . . 9 (4 · 2) = 8
9642, 29, 95mulcomli 11030 . . . . . . . 8 (2 · 4) = 8
9796, 62deceq12i 12492 . . . . . . 7 (2 · 4)(2 · 2) = 84
9894, 97eqtri 2764 . . . . . 6 (2 · 42) = 84
9921nn0cni 12291 . . . . . . . 8 16 ∈ ℂ
10099addid2i 11209 . . . . . . 7 (0 + 16) = 16
10175oveq1i 7317 . . . . . . 7 ((0 · 341) + 16) = (0 + 16)
102 4t4e16 12582 . . . . . . 7 (4 · 4) = 16
103100, 101, 1023eqtr4i 2774 . . . . . 6 ((0 · 341) + 16) = (4 · 4)
1045, 6, 22, 12, 2, 21, 93, 98, 103mod2xi 16815 . . . . 5 ((2↑84) mod 341) = (16 mod 341)
105 4p1e5 12165 . . . . . 6 (4 + 1) = 5
106 eqid 2736 . . . . . 6 84 = 84
10713, 2, 105, 106decsuc 12514 . . . . 5 (84 + 1) = 85
10818nn0cni 12291 . . . . . . 7 32 ∈ ℂ
109108addid2i 11209 . . . . . 6 (0 + 32) = 32
11075oveq1i 7317 . . . . . 6 ((0 · 341) + 32) = (0 + 32)
111 eqid 2736 . . . . . . 7 16 = 16
11284oveq1i 7317 . . . . . . . 8 ((1 · 2) + 1) = (2 + 1)
113 2p1e3 12161 . . . . . . . 8 (2 + 1) = 3
114112, 113eqtri 2764 . . . . . . 7 ((1 · 2) + 1) = 3
115 6t2e12 12587 . . . . . . 7 (6 · 2) = 12
11617, 7, 20, 111, 17, 7, 114, 115decmul1c 12548 . . . . . 6 (16 · 2) = 32
117109, 110, 1163eqtr4i 2774 . . . . 5 ((0 · 341) + 32) = (16 · 2)
1185, 6, 19, 12, 21, 18, 104, 107, 117modxp1i 16816 . . . 4 ((2↑85) mod 341) = (32 mod 341)
119 eqid 2736 . . . . 5 85 = 85
120 6p1e7 12167 . . . . . 6 (6 + 1) = 7
121 8cn 12116 . . . . . . 7 8 ∈ ℂ
122 8t2e16 12598 . . . . . . 7 (8 · 2) = 16
123121, 29, 122mulcomli 11030 . . . . . 6 (2 · 8) = 16
1247, 20, 120, 123decsuc 12514 . . . . 5 ((2 · 8) + 1) = 17
12517, 13, 14, 119, 10, 7, 124, 31decmul2c 12549 . . . 4 (2 · 85) = 170
1265, 6, 15, 16, 18, 7, 118, 125, 66mod2xi 16815 . . 3 ((2↑170) mod 341) = (1 mod 341)
12717, 9, 10decmulnc 12550 . . . 4 (2 · 170) = (2 · 17)(2 · 0)
128 eqid 2736 . . . . . 6 17 = 17
12969oveq1i 7317 . . . . . . 7 ((2 · 1) + 1) = (2 + 1)
130129, 113eqtri 2764 . . . . . 6 ((2 · 1) + 1) = 3
131 7cn 12113 . . . . . . 7 7 ∈ ℂ
132 7t2e14 12592 . . . . . . 7 (7 · 2) = 14
133131, 29, 132mulcomli 11030 . . . . . 6 (2 · 7) = 14
13417, 7, 8, 128, 2, 7, 130, 133decmul2c 12549 . . . . 5 (2 · 17) = 34
135134, 70deceq12i 12492 . . . 4 (2 · 17)(2 · 0) = 340
136127, 135eqtri 2764 . . 3 (2 · 170) = 340
1375, 6, 11, 12, 7, 7, 126, 136, 78mod2xi 16815 . 2 ((2↑340) mod 341) = (1 mod 341)
138 1re 11021 . . 3 1 ∈ ℝ
139 nnrp 12787 . . . 4 (341 ∈ ℕ → 341 ∈ ℝ+)
1405, 139ax-mp 5 . . 3 341 ∈ ℝ+
141 0le1 11544 . . 3 0 ≤ 1
142 4nn 12102 . . . . 5 4 ∈ ℕ
1431, 142decnncl 12503 . . . 4 34 ∈ ℕ
144 9re 12118 . . . . 5 9 ∈ ℝ
145 1lt9 12225 . . . . 5 1 < 9
146138, 144, 145ltleii 11144 . . . 4 1 ≤ 9
147143, 7, 7, 146decltdi 12522 . . 3 1 < 341
148 modid 13662 . . 3 (((1 ∈ ℝ ∧ 341 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 341)) → (1 mod 341) = 1)
149138, 140, 141, 147, 148mp4an 691 . 2 (1 mod 341) = 1
150137, 149eqtri 2764 1 ((2↑340) mod 341) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104   class class class wbr 5081  (class class class)co 7307  cr 10916  0cc0 10917  1c1 10918   + caddc 10920   · cmul 10922   < clt 11055  cle 11056  cn 12019  2c2 12074  3c3 12075  4c4 12076  5c5 12077  6c6 12078  7c7 12079  8c8 12080  9c9 12081  cdc 12483  +crp 12776   mod cmo 13635  cexp 13828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-rp 12777  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829
This theorem is referenced by:  341fppr2  45244
  Copyright terms: Public domain W3C validator