HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubsub4 Structured version   Visualization version   GIF version

Theorem hvsubsub4 31040
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))

Proof of Theorem hvsubsub4
StepHypRef Expression
1 oveq1 7353 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
21oveq1d 7361 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)))
3 oveq1 7353 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶))
43oveq1d 7361 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)))
52, 4eqeq12d 2747 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷))))
6 oveq2 7354 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
76oveq1d 7361 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)))
8 oveq1 7353 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))
98oveq2d 7362 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
107, 9eqeq12d 2747 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
11 oveq1 7353 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (𝐶 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷))
1211oveq2d 7362 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)))
13 oveq2 7354 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1413oveq1d 7361 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
1512, 14eqeq12d 2747 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
16 oveq2 7354 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1716oveq2d 7362 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
18 oveq2 7354 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1918oveq2d 7362 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
2017, 19eqeq12d 2747 . 2 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))))
21 ifhvhv0 31002 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
22 ifhvhv0 31002 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
23 ifhvhv0 31002 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
24 ifhvhv0 31002 . . 3 if(𝐷 ∈ ℋ, 𝐷, 0) ∈ ℋ
2521, 22, 23, 24hvsubsub4i 31039 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
265, 10, 15, 20, 25dedth4h 4534 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4472  (class class class)co 7346  chba 30899  0c0v 30904   cmv 30905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hfvmul 30985  ax-hvdistr1 30988
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347  df-hvsub 30951
This theorem is referenced by:  chscllem2  31618  5oalem3  31636  5oalem5  31638
  Copyright terms: Public domain W3C validator