HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubsub4 Structured version   Visualization version   GIF version

Theorem hvsubsub4 31004
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))

Proof of Theorem hvsubsub4
StepHypRef Expression
1 oveq1 7356 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
21oveq1d 7364 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)))
3 oveq1 7356 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶))
43oveq1d 7364 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)))
52, 4eqeq12d 2745 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷))))
6 oveq2 7357 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
76oveq1d 7364 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)))
8 oveq1 7356 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))
98oveq2d 7365 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
107, 9eqeq12d 2745 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
11 oveq1 7356 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (𝐶 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷))
1211oveq2d 7365 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)))
13 oveq2 7357 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1413oveq1d 7364 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
1512, 14eqeq12d 2745 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
16 oveq2 7357 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1716oveq2d 7365 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
18 oveq2 7357 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1918oveq2d 7365 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
2017, 19eqeq12d 2745 . 2 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))))
21 ifhvhv0 30966 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
22 ifhvhv0 30966 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
23 ifhvhv0 30966 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
24 ifhvhv0 30966 . . 3 if(𝐷 ∈ ℋ, 𝐷, 0) ∈ ℋ
2521, 22, 23, 24hvsubsub4i 31003 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
265, 10, 15, 20, 25dedth4h 4538 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4476  (class class class)co 7349  chba 30863  0c0v 30868   cmv 30869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hfvmul 30949  ax-hvdistr1 30952
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-hvsub 30915
This theorem is referenced by:  chscllem2  31582  5oalem3  31600  5oalem5  31602
  Copyright terms: Public domain W3C validator