HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubsub4 Structured version   Visualization version   GIF version

Theorem hvsubsub4 30581
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))

Proof of Theorem hvsubsub4
StepHypRef Expression
1 oveq1 7419 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
21oveq1d 7427 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)))
3 oveq1 7419 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶))
43oveq1d 7427 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)))
52, 4eqeq12d 2747 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷))))
6 oveq2 7420 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
76oveq1d 7427 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)))
8 oveq1 7419 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))
98oveq2d 7428 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
107, 9eqeq12d 2747 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
11 oveq1 7419 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (𝐶 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷))
1211oveq2d 7428 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)))
13 oveq2 7420 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1413oveq1d 7427 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
1512, 14eqeq12d 2747 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
16 oveq2 7420 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1716oveq2d 7428 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
18 oveq2 7420 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1918oveq2d 7428 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
2017, 19eqeq12d 2747 . 2 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))))
21 ifhvhv0 30543 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
22 ifhvhv0 30543 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
23 ifhvhv0 30543 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
24 ifhvhv0 30543 . . 3 if(𝐷 ∈ ℋ, 𝐷, 0) ∈ ℋ
2521, 22, 23, 24hvsubsub4i 30580 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
265, 10, 15, 20, 25dedth4h 4589 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  ifcif 4528  (class class class)co 7412  chba 30440  0c0v 30445   cmv 30446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-hfvadd 30521  ax-hvcom 30522  ax-hvass 30523  ax-hv0cl 30524  ax-hfvmul 30526  ax-hvdistr1 30529
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-ltxr 11258  df-sub 11451  df-neg 11452  df-hvsub 30492
This theorem is referenced by:  chscllem2  31159  5oalem3  31177  5oalem5  31179
  Copyright terms: Public domain W3C validator