HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubsub4 Structured version   Visualization version   GIF version

Theorem hvsubsub4 30989
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 2-Apr-2000.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))

Proof of Theorem hvsubsub4
StepHypRef Expression
1 oveq1 7394 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
21oveq1d 7402 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)))
3 oveq1 7394 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶))
43oveq1d 7402 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)))
52, 4eqeq12d 2745 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷))))
6 oveq2 7395 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
76oveq1d 7402 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)))
8 oveq1 7394 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))
98oveq2d 7403 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
107, 9eqeq12d 2745 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (𝐵 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
11 oveq1 7394 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (𝐶 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷))
1211oveq2d 7403 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)))
13 oveq2 7395 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1413oveq1d 7402 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)))
1512, 14eqeq12d 2745 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (𝐶 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷))))
16 oveq2 7395 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1716oveq2d 7403 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
18 oveq2 7395 . . . 4 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷) = (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
1918oveq2d 7403 . . 3 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))))
2017, 19eqeq12d 2745 . 2 (𝐷 = if(𝐷 ∈ ℋ, 𝐷, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − 𝐷)) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − 𝐷)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))))
21 ifhvhv0 30951 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
22 ifhvhv0 30951 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
23 ifhvhv0 30951 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
24 ifhvhv0 30951 . . 3 if(𝐷 ∈ ℋ, 𝐷, 0) ∈ ℋ
2521, 22, 23, 24hvsubsub4i 30988 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) − (if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐷 ∈ ℋ, 𝐷, 0))) = ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)) − (if(𝐵 ∈ ℋ, 𝐵, 0) − if(𝐷 ∈ ℋ, 𝐷, 0)))
265, 10, 15, 20, 25dedth4h 4550 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐵) − (𝐶 𝐷)) = ((𝐴 𝐶) − (𝐵 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488  (class class class)co 7387  chba 30848  0c0v 30853   cmv 30854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hfvmul 30934  ax-hvdistr1 30937
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408  df-hvsub 30900
This theorem is referenced by:  chscllem2  31567  5oalem3  31585  5oalem5  31587
  Copyright terms: Public domain W3C validator