MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opth2 Structured version   Visualization version   GIF version

Theorem nn0opth2 14244
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthi 14242. (Contributed by NM, 22-Jul-2004.)
Assertion
Ref Expression
nn0opth2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem nn0opth2
StepHypRef Expression
1 oveq1 7397 . . . . . 6 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵))
21oveq1d 7405 . . . . 5 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((𝐴 + 𝐵)↑2) = ((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2))
32oveq1d 7405 . . . 4 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (((𝐴 + 𝐵)↑2) + 𝐵) = (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵))
43eqeq1d 2732 . . 3 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷)))
5 eqeq1 2734 . . . 4 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (𝐴 = 𝐶 ↔ if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶))
65anbi1d 631 . . 3 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷)))
74, 6bibi12d 345 . 2 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷))))
8 oveq2 7398 . . . . . 6 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0)))
98oveq1d 7405 . . . . 5 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) = ((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2))
10 id 22 . . . . 5 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → 𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0))
119, 10oveq12d 7408 . . . 4 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)))
1211eqeq1d 2732 . . 3 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷)))
13 eqeq1 2734 . . . 4 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (𝐵 = 𝐷 ↔ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))
1413anbi2d 630 . . 3 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)))
1512, 14bibi12d 345 . 2 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))))
16 oveq1 7397 . . . . . 6 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (𝐶 + 𝐷) = (if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷))
1716oveq1d 7405 . . . . 5 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((𝐶 + 𝐷)↑2) = ((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2))
1817oveq1d 7405 . . . 4 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (((𝐶 + 𝐷)↑2) + 𝐷) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷))
1918eqeq2d 2741 . . 3 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷)))
20 eqeq2 2742 . . . 4 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ↔ if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0)))
2120anbi1d 631 . . 3 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)))
2219, 21bibi12d 345 . 2 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))))
23 oveq2 7398 . . . . . 6 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷) = (if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0)))
2423oveq1d 7405 . . . . 5 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) = ((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2))
25 id 22 . . . . 5 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → 𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0))
2624, 25oveq12d 7408 . . . 4 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)))
2726eqeq2d 2741 . . 3 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0))))
28 eqeq2 2742 . . . 4 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷 ↔ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))
2928anbi2d 630 . . 3 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0))))
3027, 29bibi12d 345 . 2 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))))
31 0nn0 12464 . . . 4 0 ∈ ℕ0
3231elimel 4561 . . 3 if(𝐴 ∈ ℕ0, 𝐴, 0) ∈ ℕ0
3331elimel 4561 . . 3 if(𝐵 ∈ ℕ0, 𝐵, 0) ∈ ℕ0
3431elimel 4561 . . 3 if(𝐶 ∈ ℕ0, 𝐶, 0) ∈ ℕ0
3531elimel 4561 . . 3 if(𝐷 ∈ ℕ0, 𝐷, 0) ∈ ℕ0
3632, 33, 34, 35nn0opth2i 14243 . 2 ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))
377, 15, 22, 30, 36dedth4h 4553 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ifcif 4491  (class class class)co 7390  0cc0 11075   + caddc 11078  2c2 12248  0cn0 12449  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-exp 14034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator