MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opth2 Structured version   Visualization version   GIF version

Theorem nn0opth2 14228
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthi 14226. (Contributed by NM, 22-Jul-2004.)
Assertion
Ref Expression
nn0opth2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem nn0opth2
StepHypRef Expression
1 oveq1 7408 . . . . . 6 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (𝐴 + 𝐵) = (if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵))
21oveq1d 7416 . . . . 5 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((𝐴 + 𝐵)↑2) = ((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2))
32oveq1d 7416 . . . 4 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (((𝐴 + 𝐵)↑2) + 𝐵) = (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵))
43eqeq1d 2726 . . 3 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷)))
5 eqeq1 2728 . . . 4 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (𝐴 = 𝐶 ↔ if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶))
65anbi1d 629 . . 3 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷)))
74, 6bibi12d 345 . 2 (𝐴 = if(𝐴 ∈ ℕ0, 𝐴, 0) → (((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷))))
8 oveq2 7409 . . . . . 6 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵) = (if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0)))
98oveq1d 7416 . . . . 5 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) = ((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2))
10 id 22 . . . . 5 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → 𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0))
119, 10oveq12d 7419 . . . 4 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)))
1211eqeq1d 2726 . . 3 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷)))
13 eqeq1 2728 . . . 4 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (𝐵 = 𝐷 ↔ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))
1413anbi2d 628 . . 3 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)))
1512, 14bibi12d 345 . 2 (𝐵 = if(𝐵 ∈ ℕ0, 𝐵, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))))
16 oveq1 7408 . . . . . 6 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (𝐶 + 𝐷) = (if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷))
1716oveq1d 7416 . . . . 5 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((𝐶 + 𝐷)↑2) = ((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2))
1817oveq1d 7416 . . . 4 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (((𝐶 + 𝐷)↑2) + 𝐷) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷))
1918eqeq2d 2735 . . 3 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷)))
20 eqeq2 2736 . . . 4 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ↔ if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0)))
2120anbi1d 629 . . 3 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)))
2219, 21bibi12d 345 . 2 (𝐶 = if(𝐶 ∈ ℕ0, 𝐶, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = 𝐶 ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷))))
23 oveq2 7409 . . . . . 6 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷) = (if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0)))
2423oveq1d 7416 . . . . 5 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) = ((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2))
25 id 22 . . . . 5 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → 𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0))
2624, 25oveq12d 7419 . . . 4 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)))
2726eqeq2d 2735 . . 3 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0))))
28 eqeq2 2736 . . . 4 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷 ↔ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))
2928anbi2d 628 . . 3 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → ((if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0))))
3027, 29bibi12d 345 . 2 (𝐷 = if(𝐷 ∈ ℕ0, 𝐷, 0) → (((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + 𝐷)↑2) + 𝐷) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = 𝐷)) ↔ ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))))
31 0nn0 12483 . . . 4 0 ∈ ℕ0
3231elimel 4589 . . 3 if(𝐴 ∈ ℕ0, 𝐴, 0) ∈ ℕ0
3331elimel 4589 . . 3 if(𝐵 ∈ ℕ0, 𝐵, 0) ∈ ℕ0
3431elimel 4589 . . 3 if(𝐶 ∈ ℕ0, 𝐶, 0) ∈ ℕ0
3531elimel 4589 . . 3 if(𝐷 ∈ ℕ0, 𝐷, 0) ∈ ℕ0
3632, 33, 34, 35nn0opth2i 14227 . 2 ((((if(𝐴 ∈ ℕ0, 𝐴, 0) + if(𝐵 ∈ ℕ0, 𝐵, 0))↑2) + if(𝐵 ∈ ℕ0, 𝐵, 0)) = (((if(𝐶 ∈ ℕ0, 𝐶, 0) + if(𝐷 ∈ ℕ0, 𝐷, 0))↑2) + if(𝐷 ∈ ℕ0, 𝐷, 0)) ↔ (if(𝐴 ∈ ℕ0, 𝐴, 0) = if(𝐶 ∈ ℕ0, 𝐶, 0) ∧ if(𝐵 ∈ ℕ0, 𝐵, 0) = if(𝐷 ∈ ℕ0, 𝐷, 0)))
377, 15, 22, 30, 36dedth4h 4581 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) → ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  ifcif 4520  (class class class)co 7401  0cc0 11105   + caddc 11108  2c2 12263  0cn0 12468  cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-seq 13963  df-exp 14024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator