HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3lemt Structured version   Visualization version   GIF version

Theorem norm3lemt 31138
Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
norm3lemt (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷))

Proof of Theorem norm3lemt
StepHypRef Expression
1 fvoveq1 7433 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)))
21breq1d 5134 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐶)) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2)))
32anbi1d 631 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2))))
4 fvoveq1 7433 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
54breq1d 5134 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵)) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷))
63, 5imbi12d 344 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷)))
7 oveq2 7418 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐶 𝐵) = (𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)))
87fveq2d 6885 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(𝐶 𝐵)) = (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))))
98breq1d 5134 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(𝐶 𝐵)) < (𝐷 / 2) ↔ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)))
109anbi2d 630 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2))))
11 oveq2 7418 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
1211fveq2d 6885 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1312breq1d 5134 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷))
1410, 13imbi12d 344 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷)))
15 oveq2 7418 . . . . . 6 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1615fveq2d 6885 . . . . 5 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))))
1716breq1d 5134 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2)))
18 fvoveq1 7433 . . . . 5 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) = (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1918breq1d 5134 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)))
2017, 19anbi12d 632 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2))))
2120imbi1d 341 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷)))
22 oveq1 7417 . . . . 5 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (𝐷 / 2) = (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))
2322breq2d 5136 . . . 4 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))
2422breq2d 5136 . . . 4 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))
2523, 24anbi12d 632 . . 3 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))))
26 breq2 5128 . . 3 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2)))
2725, 26imbi12d 344 . 2 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2))))
28 ifhvhv0 31008 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
29 ifhvhv0 31008 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
30 ifhvhv0 31008 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
31 2re 12319 . . . 4 2 ∈ ℝ
3231elimel 4575 . . 3 if(𝐷 ∈ ℝ, 𝐷, 2) ∈ ℝ
3328, 29, 30, 32norm3lem 31135 . 2 (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2))
346, 14, 21, 27, 33dedth4h 4567 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4505   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133   < clt 11274   / cdiv 11899  2c2 12300  chba 30905  normcno 30909  0c0v 30910   cmv 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his2 31069  ax-his3 31070  ax-his4 31071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-hnorm 30954  df-hvsub 30957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator