Proof of Theorem norm3lemt
Step | Hyp | Ref
| Expression |
1 | | fvoveq1 7291 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶))) |
2 | 1 | breq1d 5088 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2))) |
3 | 2 | anbi1d 629 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)))) |
4 | | fvoveq1 7291 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))) |
5 | 4 | breq1d 5088 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷)) |
6 | 3, 5 | imbi12d 344 |
. 2
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷))) |
7 | | oveq2 7276 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐶 −ℎ
𝐵) = (𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ))) |
8 | 7 | fveq2d 6772 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(𝐶 −ℎ 𝐵)) =
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))) |
9 | 8 | breq1d 5088 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2) ↔
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2))) |
10 | 9 | anbi2d 628 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)))) |
11 | | oveq2 7276 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
12 | 11 | fveq2d 6772 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
13 | 12 | breq1d 5088 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷)) |
14 | 10, 13 | imbi12d 344 |
. 2
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) |
15 | | oveq2 7276 |
. . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) |
16 | 15 | fveq2d 6772 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) |
17 | 16 | breq1d 5088 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2))) |
18 | | fvoveq1 7291 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) =
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
19 | 18 | breq1d 5088 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2))) |
20 | 17, 19 | anbi12d 630 |
. . 3
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)))) |
21 | 20 | imbi1d 341 |
. 2
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) |
22 | | oveq1 7275 |
. . . . 5
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (𝐷 / 2) = (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) |
23 | 22 | breq2d 5090 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) |
24 | 22 | breq2d 5090 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) |
25 | 23, 24 | anbi12d 630 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))) |
26 | | breq2 5082 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2))) |
27 | 25, 26 | imbi12d 344 |
. 2
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)))) |
28 | | ifhvhv0 29363 |
. . 3
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈
ℋ |
29 | | ifhvhv0 29363 |
. . 3
⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈
ℋ |
30 | | ifhvhv0 29363 |
. . 3
⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈
ℋ |
31 | | 2re 12030 |
. . . 4
⊢ 2 ∈
ℝ |
32 | 31 | elimel 4533 |
. . 3
⊢ if(𝐷 ∈ ℝ, 𝐷, 2) ∈
ℝ |
33 | 28, 29, 30, 32 | norm3lem 29490 |
. 2
⊢
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)) |
34 | 6, 14, 21, 27, 33 | dedth4h 4525 |
1
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷)) |