Proof of Theorem norm3lemt
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fvoveq1 7454 | . . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶))) | 
| 2 | 1 | breq1d 5153 | . . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2))) | 
| 3 | 2 | anbi1d 631 | . . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)))) | 
| 4 |  | fvoveq1 7454 | . . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))) | 
| 5 | 4 | breq1d 5153 | . . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷)) | 
| 6 | 3, 5 | imbi12d 344 | . 2
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷))) | 
| 7 |  | oveq2 7439 | . . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (𝐶 −ℎ
𝐵) = (𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ))) | 
| 8 | 7 | fveq2d 6910 | . . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(𝐶 −ℎ 𝐵)) =
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))) | 
| 9 | 8 | breq1d 5153 | . . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2) ↔
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2))) | 
| 10 | 9 | anbi2d 630 | . . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)))) | 
| 11 |  | oveq2 7439 | . . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | 
| 12 | 11 | fveq2d 6910 | . . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) | 
| 13 | 12 | breq1d 5153 | . . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷)) | 
| 14 | 10, 13 | imbi12d 344 | . 2
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) | 
| 15 |  | oveq2 7439 | . . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) | 
| 16 | 15 | fveq2d 6910 | . . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ)))) | 
| 17 | 16 | breq1d 5153 | . . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2))) | 
| 18 |  | fvoveq1 7454 | . . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) =
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) | 
| 19 | 18 | breq1d 5153 | . . . 4
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2))) | 
| 20 | 17, 19 | anbi12d 632 | . . 3
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)))) | 
| 21 | 20 | imbi1d 341 | . 2
⊢ (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) <
(𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷))) | 
| 22 |  | oveq1 7438 | . . . . 5
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (𝐷 / 2) = (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) | 
| 23 | 22 | breq2d 5155 | . . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) | 
| 24 | 22 | breq2d 5155 | . . . 4
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2) ↔
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))) | 
| 25 | 23, 24 | anbi12d 632 | . . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) ↔
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))) | 
| 26 |  | breq2 5147 | . . 3
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷 ↔
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2))) | 
| 27 | 25, 26 | imbi12d 344 | . 2
⊢ (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (𝐷 / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (𝐷 / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < 𝐷) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)))) | 
| 28 |  | ifhvhv0 31041 | . . 3
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈
ℋ | 
| 29 |  | ifhvhv0 31041 | . . 3
⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈
ℋ | 
| 30 |  | ifhvhv0 31041 | . . 3
⊢ if(𝐶 ∈ ℋ, 𝐶, 0ℎ) ∈
ℋ | 
| 31 |  | 2re 12340 | . . . 4
⊢ 2 ∈
ℝ | 
| 32 | 31 | elimel 4595 | . . 3
⊢ if(𝐷 ∈ ℝ, 𝐷, 2) ∈
ℝ | 
| 33 | 28, 29, 30, 32 | norm3lem 31168 | . 2
⊢
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐶 ∈ ℋ, 𝐶, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧
(normℎ‘(if(𝐶 ∈ ℋ, 𝐶, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) < if(𝐷 ∈ ℝ, 𝐷, 2)) | 
| 34 | 6, 14, 21, 27, 33 | dedth4h 4587 | 1
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) →
(((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧
(normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) →
(normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷)) |