HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3lemt Structured version   Visualization version   GIF version

Theorem norm3lemt 29493
Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
norm3lemt (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷))

Proof of Theorem norm3lemt
StepHypRef Expression
1 fvoveq1 7291 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)))
21breq1d 5088 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐶)) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2)))
32anbi1d 629 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2))))
4 fvoveq1 7291 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (norm‘(𝐴 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)))
54breq1d 5088 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((norm‘(𝐴 𝐵)) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷))
63, 5imbi12d 344 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷)))
7 oveq2 7276 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐶 𝐵) = (𝐶 if(𝐵 ∈ ℋ, 𝐵, 0)))
87fveq2d 6772 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(𝐶 𝐵)) = (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))))
98breq1d 5088 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(𝐶 𝐵)) < (𝐷 / 2) ↔ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)))
109anbi2d 628 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2))))
11 oveq2 7276 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
1211fveq2d 6772 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1312breq1d 5088 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷))
1410, 13imbi12d 344 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵)) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷)))
15 oveq2 7276 . . . . . 6 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0)))
1615fveq2d 6772 . . . . 5 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) = (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))))
1716breq1d 5088 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2)))
18 fvoveq1 7291 . . . . 5 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) = (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))))
1918breq1d 5088 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)))
2017, 19anbi12d 630 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2))))
2120imbi1d 341 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷)))
22 oveq1 7275 . . . . 5 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (𝐷 / 2) = (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))
2322breq2d 5090 . . . 4 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))
2422breq2d 5090 . . . 4 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2) ↔ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)))
2523, 24anbi12d 630 . . 3 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) ↔ ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2))))
26 breq2 5082 . . 3 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷 ↔ (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2)))
2725, 26imbi12d 344 . 2 (𝐷 = if(𝐷 ∈ ℝ, 𝐷, 2) → ((((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (𝐷 / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (𝐷 / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < 𝐷) ↔ (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2))))
28 ifhvhv0 29363 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
29 ifhvhv0 29363 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
30 ifhvhv0 29363 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
31 2re 12030 . . . 4 2 ∈ ℝ
3231elimel 4533 . . 3 if(𝐷 ∈ ℝ, 𝐷, 2) ∈ ℝ
3328, 29, 30, 32norm3lem 29490 . 2 (((norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐶 ∈ ℋ, 𝐶, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2) ∧ (norm‘(if(𝐶 ∈ ℋ, 𝐶, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < (if(𝐷 ∈ ℝ, 𝐷, 2) / 2)) → (norm‘(if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0))) < if(𝐷 ∈ ℝ, 𝐷, 2))
346, 14, 21, 27, 33dedth4h 4525 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℝ)) → (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  ifcif 4464   class class class wbr 5078  cfv 6430  (class class class)co 7268  cr 10854   < clt 10993   / cdiv 11615  2c2 12011  chba 29260  normcno 29264  0c0v 29265   cmv 29266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-hfvadd 29341  ax-hvcom 29342  ax-hvass 29343  ax-hv0cl 29344  ax-hvaddid 29345  ax-hfvmul 29346  ax-hvmulid 29347  ax-hvmulass 29348  ax-hvdistr2 29350  ax-hvmul0 29351  ax-hfi 29420  ax-his1 29423  ax-his2 29424  ax-his3 29425  ax-his4 29426
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-hnorm 29309  df-hvsub 29312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator