Proof of Theorem ax5seglem8
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7440 |
. . . . . . 7
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · 𝐴) = ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0))) |
| 2 | 1 | oveq1d 7447 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) = (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶))) |
| 3 | 2 | oveq1d 7447 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)) |
| 4 | 3 | oveq1d 7447 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2)) |
| 5 | | oveq1 7439 |
. . . . . . . 8
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 − 𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)) |
| 6 | 5 | oveq1d 7447 |
. . . . . . 7
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 − 𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) |
| 7 | 6 | oveq2d 7448 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝑇 · ((𝐴 − 𝐶)↑2)) = (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2))) |
| 8 | | oveq1 7439 |
. . . . . . 7
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴 − 𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)) |
| 9 | 8 | oveq1d 7447 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴 − 𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) |
| 10 | 7, 9 | oveq12d 7450 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2)) = ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) |
| 11 | 10 | oveq2d 7448 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2))) = ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) |
| 12 | 4, 11 | oveq12d 7450 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2)))) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))) |
| 13 | 12 | eqeq2d 2747 |
. 2
⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2)))) ↔ (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))) |
| 14 | | oveq1 7439 |
. . 3
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((𝐶 − 𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶 − 𝐷)↑2))) |
| 15 | | oveq2 7440 |
. . . . . . . 8
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (1 − 𝑇) = (1 − if(𝑇 ∈ ℂ, 𝑇, 0))) |
| 16 | 15 | oveq1d 7447 |
. . . . . . 7
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0))) |
| 17 | | oveq1 7439 |
. . . . . . 7
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) |
| 18 | 16, 17 | oveq12d 7450 |
. . . . . 6
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶))) |
| 19 | 18 | oveq1d 7447 |
. . . . 5
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)) |
| 20 | 19 | oveq1d 7447 |
. . . 4
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2)) |
| 21 | | oveq1 7439 |
. . . . . 6
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2))) |
| 22 | 21 | oveq1d 7447 |
. . . . 5
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) |
| 23 | 15, 22 | oveq12d 7450 |
. . . 4
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) |
| 24 | 20, 23 | oveq12d 7450 |
. . 3
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))) |
| 25 | 14, 24 | eqeq12d 2752 |
. 2
⊢ (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶 − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))) |
| 26 | | oveq1 7439 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 − 𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)) |
| 27 | 26 | oveq1d 7447 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝐶 − 𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) |
| 28 | 27 | oveq2d 7448 |
. . 3
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶 − 𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2))) |
| 29 | | oveq2 7440 |
. . . . . . 7
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) |
| 30 | 29 | oveq2d 7448 |
. . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0)))) |
| 31 | 30 | oveq1d 7447 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)) |
| 32 | 31 | oveq1d 7447 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2)) |
| 33 | | oveq2 7440 |
. . . . . . . 8
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))) |
| 34 | 33 | oveq1d 7447 |
. . . . . . 7
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) |
| 35 | 34 | oveq2d 7448 |
. . . . . 6
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2))) |
| 36 | 35 | oveq1d 7447 |
. . . . 5
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) |
| 37 | 36 | oveq2d 7448 |
. . . 4
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) −
((if(𝐴 ∈ ℂ,
𝐴, 0) − 𝐷)↑2)))) |
| 38 | 32, 37 | oveq12d 7450 |
. . 3
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))) |
| 39 | 28, 38 | eqeq12d 2752 |
. 2
⊢ (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶 − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))) |
| 40 | | oveq2 7440 |
. . . . 5
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))) |
| 41 | 40 | oveq1d 7447 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) |
| 42 | 41 | oveq2d 7448 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))) |
| 43 | | oveq2 7440 |
. . . . 5
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))) |
| 44 | 43 | oveq1d 7447 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) |
| 45 | | oveq2 7440 |
. . . . . . 7
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))) |
| 46 | 45 | oveq1d 7447 |
. . . . . 6
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) |
| 47 | 46 | oveq2d 7448 |
. . . . 5
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))) |
| 48 | 47 | oveq2d 7448 |
. . . 4
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) −
((if(𝐴 ∈ ℂ,
𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷,
0))↑2)))) |
| 49 | 44, 48 | oveq12d 7450 |
. . 3
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) −
((if(𝐴 ∈ ℂ,
𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷,
0))↑2))))) |
| 50 | 42, 49 | eqeq12d 2752 |
. 2
⊢ (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) −
((if(𝐴 ∈ ℂ,
𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷,
0))↑2)))))) |
| 51 | | 0cn 11254 |
. . . 4
⊢ 0 ∈
ℂ |
| 52 | 51 | elimel 4594 |
. . 3
⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈
ℂ |
| 53 | 51 | elimel 4594 |
. . 3
⊢ if(𝑇 ∈ ℂ, 𝑇, 0) ∈
ℂ |
| 54 | 51 | elimel 4594 |
. . 3
⊢ if(𝐶 ∈ ℂ, 𝐶, 0) ∈
ℂ |
| 55 | 51 | elimel 4594 |
. . 3
⊢ if(𝐷 ∈ ℂ, 𝐷, 0) ∈
ℂ |
| 56 | 52, 53, 54, 55 | ax5seglem7 28951 |
. 2
⊢ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 −
if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) −
((if(𝐴 ∈ ℂ,
𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷,
0))↑2)))) |
| 57 | 13, 25, 39, 50, 56 | dedth4h 4586 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶 − 𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴 − 𝐶)↑2)) − ((𝐴 − 𝐷)↑2))))) |