MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem8 Structured version   Visualization version   GIF version

Theorem ax5seglem8 28863
Description: Lemma for ax5seg 28865. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 28862. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem8 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))))

Proof of Theorem ax5seglem8
StepHypRef Expression
1 oveq2 7395 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · 𝐴) = ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)))
21oveq1d 7402 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) = (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)))
32oveq1d 7402 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷))
43oveq1d 7402 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2))
5 oveq1 7394 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶))
65oveq1d 7402 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2))
76oveq2d 7403 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝑇 · ((𝐴𝐶)↑2)) = (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)))
8 oveq1 7394 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷))
98oveq1d 7402 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))
107, 9oveq12d 7405 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)) = ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
1110oveq2d 7403 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2))) = ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
124, 11oveq12d 7405 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
1312eqeq2d 2740 . 2 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))) ↔ (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
14 oveq1 7394 . . 3 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((𝐶𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)))
15 oveq2 7395 . . . . . . . 8 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (1 − 𝑇) = (1 − if(𝑇 ∈ ℂ, 𝑇, 0)))
1615oveq1d 7402 . . . . . . 7 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)))
17 oveq1 7394 . . . . . . 7 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶))
1816, 17oveq12d 7405 . . . . . 6 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)))
1918oveq1d 7402 . . . . 5 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷))
2019oveq1d 7402 . . . 4 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2))
21 oveq1 7394 . . . . . 6 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)))
2221oveq1d 7402 . . . . 5 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
2315, 22oveq12d 7405 . . . 4 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
2420, 23oveq12d 7405 . . 3 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
2514, 24eqeq12d 2745 . 2 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
26 oveq1 7394 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷))
2726oveq1d 7402 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝐶𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2))
2827oveq2d 7403 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)))
29 oveq2 7395 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0)))
3029oveq2d 7403 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))))
3130oveq1d 7402 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷))
3231oveq1d 7402 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2))
33 oveq2 7395 . . . . . . . 8 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0)))
3433oveq1d 7402 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2))
3534oveq2d 7403 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)))
3635oveq1d 7402 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
3736oveq2d 7403 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
3832, 37oveq12d 7405 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
3928, 38eqeq12d 2745 . 2 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
40 oveq2 7395 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4140oveq1d 7402 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
4241oveq2d 7403 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))
43 oveq2 7395 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4443oveq1d 7402 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
45 oveq2 7395 . . . . . . 7 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4645oveq1d 7402 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
4746oveq2d 7403 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))
4847oveq2d 7403 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))
4944, 48oveq12d 7405 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))))
5042, 49eqeq12d 2745 . 2 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))))
51 0cn 11166 . . . 4 0 ∈ ℂ
5251elimel 4558 . . 3 if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ
5351elimel 4558 . . 3 if(𝑇 ∈ ℂ, 𝑇, 0) ∈ ℂ
5451elimel 4558 . . 3 if(𝐶 ∈ ℂ, 𝐶, 0) ∈ ℂ
5551elimel 4558 . . 3 if(𝐷 ∈ ℂ, 𝐷, 0) ∈ ℂ
5652, 53, 54, 55ax5seglem7 28862 . 2 (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))
5713, 25, 39, 50, 56dedth4h 4550 1 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  2c2 12241  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  ax5seglem9  28864
  Copyright terms: Public domain W3C validator