MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem8 Structured version   Visualization version   GIF version

Theorem ax5seglem8 27304
Description: Lemma for ax5seg 27306. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 27303. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem8 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))))

Proof of Theorem ax5seglem8
StepHypRef Expression
1 oveq2 7283 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · 𝐴) = ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)))
21oveq1d 7290 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) = (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)))
32oveq1d 7290 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷))
43oveq1d 7290 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2))
5 oveq1 7282 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶))
65oveq1d 7290 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2))
76oveq2d 7291 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝑇 · ((𝐴𝐶)↑2)) = (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)))
8 oveq1 7282 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷))
98oveq1d 7290 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))
107, 9oveq12d 7293 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)) = ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
1110oveq2d 7291 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2))) = ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
124, 11oveq12d 7293 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
1312eqeq2d 2749 . 2 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))) ↔ (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
14 oveq1 7282 . . 3 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((𝐶𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)))
15 oveq2 7283 . . . . . . . 8 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (1 − 𝑇) = (1 − if(𝑇 ∈ ℂ, 𝑇, 0)))
1615oveq1d 7290 . . . . . . 7 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)))
17 oveq1 7282 . . . . . . 7 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶))
1816, 17oveq12d 7293 . . . . . 6 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)))
1918oveq1d 7290 . . . . 5 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷))
2019oveq1d 7290 . . . 4 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2))
21 oveq1 7282 . . . . . 6 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)))
2221oveq1d 7290 . . . . 5 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
2315, 22oveq12d 7293 . . . 4 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
2420, 23oveq12d 7293 . . 3 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
2514, 24eqeq12d 2754 . 2 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
26 oveq1 7282 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷))
2726oveq1d 7290 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝐶𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2))
2827oveq2d 7291 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)))
29 oveq2 7283 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0)))
3029oveq2d 7291 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))))
3130oveq1d 7290 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷))
3231oveq1d 7290 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2))
33 oveq2 7283 . . . . . . . 8 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0)))
3433oveq1d 7290 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2))
3534oveq2d 7291 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)))
3635oveq1d 7290 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
3736oveq2d 7291 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
3832, 37oveq12d 7293 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
3928, 38eqeq12d 2754 . 2 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
40 oveq2 7283 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4140oveq1d 7290 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
4241oveq2d 7291 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))
43 oveq2 7283 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4443oveq1d 7290 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
45 oveq2 7283 . . . . . . 7 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4645oveq1d 7290 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
4746oveq2d 7291 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))
4847oveq2d 7291 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))
4944, 48oveq12d 7293 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))))
5042, 49eqeq12d 2754 . 2 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))))
51 0cn 10967 . . . 4 0 ∈ ℂ
5251elimel 4528 . . 3 if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ
5351elimel 4528 . . 3 if(𝑇 ∈ ℂ, 𝑇, 0) ∈ ℂ
5451elimel 4528 . . 3 if(𝐶 ∈ ℂ, 𝐶, 0) ∈ ℂ
5551elimel 4528 . . 3 if(𝐷 ∈ ℂ, 𝐷, 0) ∈ ℂ
5652, 53, 54, 55ax5seglem7 27303 . 2 (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))
5713, 25, 39, 50, 56dedth4h 4520 1 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ifcif 4459  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  2c2 12028  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  ax5seglem9  27305
  Copyright terms: Public domain W3C validator