MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seglem8 Structured version   Visualization version   GIF version

Theorem ax5seglem8 26724
Description: Lemma for ax5seg 26726. Use the weak deduction theorem to eliminate the hypotheses from ax5seglem7 26723. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
ax5seglem8 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))))

Proof of Theorem ax5seglem8
StepHypRef Expression
1 oveq2 7166 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · 𝐴) = ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)))
21oveq1d 7173 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) = (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)))
32oveq1d 7173 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷))
43oveq1d 7173 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2))
5 oveq1 7165 . . . . . . . 8 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶))
65oveq1d 7173 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2))
76oveq2d 7174 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝑇 · ((𝐴𝐶)↑2)) = (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)))
8 oveq1 7165 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (𝐴𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷))
98oveq1d 7173 . . . . . 6 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝐴𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))
107, 9oveq12d 7176 . . . . 5 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)) = ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
1110oveq2d 7174 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2))) = ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
124, 11oveq12d 7176 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
1312eqeq2d 2834 . 2 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))) ↔ (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
14 oveq1 7165 . . 3 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((𝐶𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)))
15 oveq2 7166 . . . . . . . 8 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (1 − 𝑇) = (1 − if(𝑇 ∈ ℂ, 𝑇, 0)))
1615oveq1d 7173 . . . . . . 7 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)))
17 oveq1 7165 . . . . . . 7 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶))
1816, 17oveq12d 7176 . . . . . 6 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)))
1918oveq1d 7173 . . . . 5 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷))
2019oveq1d 7173 . . . 4 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2))
21 oveq1 7165 . . . . . 6 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → (𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)))
2221oveq1d 7173 . . . . 5 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
2315, 22oveq12d 7176 . . . 4 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
2420, 23oveq12d 7176 . . 3 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
2514, 24eqeq12d 2839 . 2 (𝑇 = if(𝑇 ∈ ℂ, 𝑇, 0) → ((𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
26 oveq1 7165 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷))
2726oveq1d 7173 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝐶𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2))
2827oveq2d 7174 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)))
29 oveq2 7166 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶) = (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0)))
3029oveq2d 7174 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) = (((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))))
3130oveq1d 7173 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷))
3231oveq1d 7173 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2))
33 oveq2 7166 . . . . . . . 8 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0)))
3433oveq1d 7173 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2))
3534oveq2d 7174 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)))
3635oveq1d 7173 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))
3736oveq2d 7174 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))
3832, 37oveq12d 7176 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))))
3928, 38eqeq12d 2839 . 2 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((𝐶𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · 𝐶)) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐶)↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))))))
40 oveq2 7166 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷) = (if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4140oveq1d 7173 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2) = ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
4241oveq2d 7174 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))
43 oveq2 7166 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷) = ((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4443oveq1d 7173 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) = (((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
45 oveq2 7166 . . . . . . 7 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷) = (if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0)))
4645oveq1d 7173 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2) = ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))
4746oveq2d 7174 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)) = ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))
4847oveq2d 7174 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2))) = ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))
4944, 48oveq12d 7176 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)))))
5042, 49eqeq12d 2839 . 2 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − 𝐷)↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − 𝐷)↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − 𝐷)↑2)))) ↔ (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))))
51 0cn 10635 . . . 4 0 ∈ ℂ
5251elimel 4536 . . 3 if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ
5351elimel 4536 . . 3 if(𝑇 ∈ ℂ, 𝑇, 0) ∈ ℂ
5451elimel 4536 . . 3 if(𝐶 ∈ ℂ, 𝐶, 0) ∈ ℂ
5551elimel 4536 . . 3 if(𝐷 ∈ ℂ, 𝐷, 0) ∈ ℂ
5652, 53, 54, 55ax5seglem7 26723 . 2 (if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐶 ∈ ℂ, 𝐶, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2)) = ((((((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · if(𝐴 ∈ ℂ, 𝐴, 0)) + (if(𝑇 ∈ ℂ, 𝑇, 0) · if(𝐶 ∈ ℂ, 𝐶, 0))) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2) + ((1 − if(𝑇 ∈ ℂ, 𝑇, 0)) · ((if(𝑇 ∈ ℂ, 𝑇, 0) · ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐶 ∈ ℂ, 𝐶, 0))↑2)) − ((if(𝐴 ∈ ℂ, 𝐴, 0) − if(𝐷 ∈ ℂ, 𝐷, 0))↑2))))
5713, 25, 39, 50, 56dedth4h 4528 1 (((𝐴 ∈ ℂ ∧ 𝑇 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝑇 · ((𝐶𝐷)↑2)) = ((((((1 − 𝑇) · 𝐴) + (𝑇 · 𝐶)) − 𝐷)↑2) + ((1 − 𝑇) · ((𝑇 · ((𝐴𝐶)↑2)) − ((𝐴𝐷)↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  ifcif 4469  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cmin 10872  2c2 11695  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  ax5seglem9  26725
  Copyright terms: Public domain W3C validator