MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth Structured version   Visualization version   GIF version

Theorem omopth 8572
Description: An ordered pair theorem for finite integers. Analogous to nn0opthi 14172. (Contributed by Scott Fenton, 1-May-2012.)
Assertion
Ref Expression
omopth (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ ω)) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem omopth
StepHypRef Expression
1 oveq1 7348 . . . . . 6 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵))
21, 1oveq12d 7359 . . . . 5 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)))
32oveq1d 7356 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) +o 𝐵))
43eqeq1d 2733 . . 3 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷)))
5 eqeq1 2735 . . . 4 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (𝐴 = 𝐶 ↔ if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶))
65anbi1d 631 . . 3 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → ((𝐴 = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷)))
74, 6bibi12d 345 . 2 (𝐴 = if(𝐴 ∈ ω, 𝐴, ∅) → (((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷))))
8 oveq2 7349 . . . . . 6 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) = (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)))
98, 8oveq12d 7359 . . . . 5 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) = ((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))))
10 id 22 . . . . 5 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → 𝐵 = if(𝐵 ∈ ω, 𝐵, ∅))
119, 10oveq12d 7359 . . . 4 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) +o 𝐵) = (((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)))
1211eqeq1d 2733 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷)))
13 eqeq1 2735 . . . 4 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (𝐵 = 𝐷 ↔ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷))
1413anbi2d 630 . . 3 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)))
1512, 14bibi12d 345 . 2 (𝐵 = if(𝐵 ∈ ω, 𝐵, ∅) → (((((if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶𝐵 = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷))))
16 oveq1 7348 . . . . . 6 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (𝐶 +o 𝐷) = (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷))
1716, 16oveq12d 7359 . . . . 5 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → ((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) = ((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)))
1817oveq1d 7356 . . . 4 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)) +o 𝐷))
1918eqeq2d 2742 . . 3 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → ((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)) +o 𝐷)))
20 eqeq2 2743 . . . 4 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ↔ if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅)))
2120anbi1d 631 . . 3 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)))
2219, 21bibi12d 345 . 2 (𝐶 = if(𝐶 ∈ ω, 𝐶, ∅) → (((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = 𝐶 ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)) +o 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷))))
23 oveq2 7349 . . . . . 6 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) = (if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅)))
2423, 23oveq12d 7359 . . . . 5 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → ((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)) = ((if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅)) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅))))
25 id 22 . . . . 5 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → 𝐷 = if(𝐷 ∈ ω, 𝐷, ∅))
2624, 25oveq12d 7359 . . . 4 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)) +o 𝐷) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅)) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅))) +o if(𝐷 ∈ ω, 𝐷, ∅)))
2726eqeq2d 2742 . . 3 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → ((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)) +o 𝐷) ↔ (((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅)) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅))) +o if(𝐷 ∈ ω, 𝐷, ∅))))
28 eqeq2 2743 . . . 4 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷 ↔ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅)))
2928anbi2d 630 . . 3 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → ((if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅))))
3027, 29bibi12d 345 . 2 (𝐷 = if(𝐷 ∈ ω, 𝐷, ∅) → (((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o 𝐷)) +o 𝐷) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = 𝐷)) ↔ ((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅)) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅))) +o if(𝐷 ∈ ω, 𝐷, ∅)) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅)))))
31 peano1 7814 . . . 4 ∅ ∈ ω
3231elimel 4540 . . 3 if(𝐴 ∈ ω, 𝐴, ∅) ∈ ω
3331elimel 4540 . . 3 if(𝐵 ∈ ω, 𝐵, ∅) ∈ ω
3431elimel 4540 . . 3 if(𝐶 ∈ ω, 𝐶, ∅) ∈ ω
3531elimel 4540 . . 3 if(𝐷 ∈ ω, 𝐷, ∅) ∈ ω
3632, 33, 34, 35omopthi 8571 . 2 ((((if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅)) ·o (if(𝐴 ∈ ω, 𝐴, ∅) +o if(𝐵 ∈ ω, 𝐵, ∅))) +o if(𝐵 ∈ ω, 𝐵, ∅)) = (((if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅)) ·o (if(𝐶 ∈ ω, 𝐶, ∅) +o if(𝐷 ∈ ω, 𝐷, ∅))) +o if(𝐷 ∈ ω, 𝐷, ∅)) ↔ (if(𝐴 ∈ ω, 𝐴, ∅) = if(𝐶 ∈ ω, 𝐶, ∅) ∧ if(𝐵 ∈ ω, 𝐵, ∅) = if(𝐷 ∈ ω, 𝐷, ∅)))
377, 15, 22, 30, 36dedth4h 4532 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐷 ∈ ω)) → ((((𝐴 +o 𝐵) ·o (𝐴 +o 𝐵)) +o 𝐵) = (((𝐶 +o 𝐷) ·o (𝐶 +o 𝐷)) +o 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  c0 4278  ifcif 4470  (class class class)co 7341  ωcom 7791   +o coa 8377   ·o comu 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator