HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorth Structured version   Visualization version   GIF version

Theorem eigorth 29621
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigorth ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorth
StepHypRef Expression
1 fveq2 6645 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 7143 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐶 · 𝐴) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2814 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐶 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0))))
43anbi1d 632 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵))))
54anbi1d 632 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))))
6 oveq1 7142 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)))
71oveq1d 7150 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
86, 7eqeq12d 2814 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵)))
9 oveq1 7142 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
109eqeq1d 2800 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))
118, 10bibi12d 349 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)))
125, 11imbi12d 348 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))))
13 fveq2 6645 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇𝐵) = (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)))
14 oveq2 7143 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐷 · 𝐵) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))
1513, 14eqeq12d 2814 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇𝐵) = (𝐷 · 𝐵) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))))
1615anbi2d 631 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
1716anbi1d 632 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷))))
1813oveq2d 7151 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))))
19 oveq2 7143 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2018, 19eqeq12d 2814 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0))))
21 oveq2 7143 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2221eqeq1d 2800 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
2320, 22bibi12d 349 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)))
2417, 23imbi12d 348 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
25 oveq1 7142 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
2625eqeq2d 2809 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
2726anbi1d 632 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
28 neeq1 3049 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)))
2927, 28anbi12d 633 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷))))
3029imbi1d 345 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
31 oveq1 7142 . . . . . . 7 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))
3231eqeq2d 2809 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))))
3332anbi2d 631 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))))
34 fveq2 6645 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (∗‘𝐷) = (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))
3534neeq2d 3047 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))))
3633, 35anbi12d 633 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))))
3736imbi1d 345 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
38 ifhvhv0 28805 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
39 ifhvhv0 28805 . . . 4 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
40 0cn 10622 . . . . 5 0 ∈ ℂ
4140elimel 4492 . . . 4 if(𝐶 ∈ ℂ, 𝐶, 0) ∈ ℂ
4240elimel 4492 . . . 4 if(𝐷 ∈ ℂ, 𝐷, 0) ∈ ℂ
4338, 39, 41, 42eigorthi 29620 . . 3 ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
4412, 24, 30, 37, 43dedth4h 4484 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)))
4544imp 410 1 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  ifcif 4425  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  ccj 14447  chba 28702   · csm 28704   ·ih csp 28705  0c0v 28707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-hv0cl 28786  ax-hfvmul 28788  ax-hfi 28862  ax-his1 28865  ax-his3 28867
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-cj 14450  df-re 14451  df-im 14452
This theorem is referenced by:  eighmorth  29747
  Copyright terms: Public domain W3C validator