HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorth Structured version   Visualization version   GIF version

Theorem eigorth 31810
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigorth ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorth
StepHypRef Expression
1 fveq2 6817 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 7349 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐶 · 𝐴) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2747 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐶 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0))))
43anbi1d 631 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵))))
54anbi1d 631 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))))
6 oveq1 7348 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)))
71oveq1d 7356 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
86, 7eqeq12d 2747 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵)))
9 oveq1 7348 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
109eqeq1d 2733 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))
118, 10bibi12d 345 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)))
125, 11imbi12d 344 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))))
13 fveq2 6817 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇𝐵) = (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)))
14 oveq2 7349 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐷 · 𝐵) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))
1513, 14eqeq12d 2747 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇𝐵) = (𝐷 · 𝐵) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))))
1615anbi2d 630 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
1716anbi1d 631 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷))))
1813oveq2d 7357 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))))
19 oveq2 7349 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2018, 19eqeq12d 2747 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0))))
21 oveq2 7349 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2221eqeq1d 2733 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
2320, 22bibi12d 345 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)))
2417, 23imbi12d 344 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
25 oveq1 7348 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
2625eqeq2d 2742 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
2726anbi1d 631 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
28 neeq1 2990 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)))
2927, 28anbi12d 632 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷))))
3029imbi1d 341 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
31 oveq1 7348 . . . . . . 7 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))
3231eqeq2d 2742 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))))
3332anbi2d 630 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))))
34 fveq2 6817 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (∗‘𝐷) = (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))
3534neeq2d 2988 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))))
3633, 35anbi12d 632 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))))
3736imbi1d 341 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
38 ifhvhv0 30994 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
39 ifhvhv0 30994 . . . 4 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
40 0cn 11099 . . . . 5 0 ∈ ℂ
4140elimel 4540 . . . 4 if(𝐶 ∈ ℂ, 𝐶, 0) ∈ ℂ
4240elimel 4540 . . . 4 if(𝐷 ∈ ℂ, 𝐷, 0) ∈ ℂ
4338, 39, 41, 42eigorthi 31809 . . 3 ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
4412, 24, 30, 37, 43dedth4h 4532 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)))
4544imp 406 1 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  ifcif 4470  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  ccj 14998  chba 30891   · csm 30893   ·ih csp 30894  0c0v 30896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-hv0cl 30975  ax-hfvmul 30977  ax-hfi 31051  ax-his1 31054  ax-his3 31056
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-cj 15001  df-re 15002  df-im 15003
This theorem is referenced by:  eighmorth  31936
  Copyright terms: Public domain W3C validator