HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorth Structured version   Visualization version   GIF version

Theorem eigorth 31870
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigorth ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorth
StepHypRef Expression
1 fveq2 6920 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 7456 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐶 · 𝐴) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2756 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐶 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0))))
43anbi1d 630 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵))))
54anbi1d 630 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))))
6 oveq1 7455 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)))
71oveq1d 7463 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
86, 7eqeq12d 2756 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵)))
9 oveq1 7455 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
109eqeq1d 2742 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))
118, 10bibi12d 345 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)))
125, 11imbi12d 344 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))))
13 fveq2 6920 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇𝐵) = (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)))
14 oveq2 7456 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐷 · 𝐵) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))
1513, 14eqeq12d 2756 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇𝐵) = (𝐷 · 𝐵) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))))
1615anbi2d 629 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
1716anbi1d 630 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷))))
1813oveq2d 7464 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))))
19 oveq2 7456 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2018, 19eqeq12d 2756 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0))))
21 oveq2 7456 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2221eqeq1d 2742 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
2320, 22bibi12d 345 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)))
2417, 23imbi12d 344 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
25 oveq1 7455 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
2625eqeq2d 2751 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
2726anbi1d 630 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
28 neeq1 3009 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)))
2927, 28anbi12d 631 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷))))
3029imbi1d 341 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
31 oveq1 7455 . . . . . . 7 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))
3231eqeq2d 2751 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))))
3332anbi2d 629 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))))
34 fveq2 6920 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (∗‘𝐷) = (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))
3534neeq2d 3007 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))))
3633, 35anbi12d 631 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))))
3736imbi1d 341 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
38 ifhvhv0 31054 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
39 ifhvhv0 31054 . . . 4 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
40 0cn 11282 . . . . 5 0 ∈ ℂ
4140elimel 4617 . . . 4 if(𝐶 ∈ ℂ, 𝐶, 0) ∈ ℂ
4240elimel 4617 . . . 4 if(𝐷 ∈ ℂ, 𝐷, 0) ∈ ℂ
4338, 39, 41, 42eigorthi 31869 . . 3 ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
4412, 24, 30, 37, 43dedth4h 4609 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)))
4544imp 406 1 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  ifcif 4548  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  ccj 15145  chba 30951   · csm 30953   ·ih csp 30954  0c0v 30956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-hv0cl 31035  ax-hfvmul 31037  ax-hfi 31111  ax-his1 31114  ax-his3 31116
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150
This theorem is referenced by:  eighmorth  31996
  Copyright terms: Public domain W3C validator