HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorth Structured version   Visualization version   GIF version

Theorem eigorth 30780
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigorth ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorth
StepHypRef Expression
1 fveq2 6842 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 7365 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐶 · 𝐴) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2752 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐶 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0))))
43anbi1d 630 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵))))
54anbi1d 630 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))))
6 oveq1 7364 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)))
71oveq1d 7372 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵))
86, 7eqeq12d 2752 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵)))
9 oveq1 7364 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵))
109eqeq1d 2738 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))
118, 10bibi12d 345 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)))
125, 11imbi12d 344 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0))))
13 fveq2 6842 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝑇𝐵) = (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)))
14 oveq2 7365 . . . . . . 7 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐷 · 𝐵) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))
1513, 14eqeq12d 2752 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇𝐵) = (𝐷 · 𝐵) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))))
1615anbi2d 629 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
1716anbi1d 630 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷))))
1813oveq2d 7373 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))))
19 oveq2 7365 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2018, 19eqeq12d 2752 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0))))
21 oveq2 7365 . . . . . 6 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)))
2221eqeq1d 2738 . . . . 5 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
2320, 22bibi12d 345 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)))
2417, 23imbi12d 344 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇𝐵)) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih 𝐵) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih 𝐵) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
25 oveq1 7364 . . . . . . 7 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
2625eqeq2d 2747 . . . . . 6 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
2726anbi1d 630 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)))))
28 neeq1 3006 . . . . 5 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (𝐶 ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)))
2927, 28anbi12d 631 . . . 4 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷))))
3029imbi1d 341 . . 3 (𝐶 = if(𝐶 ∈ ℂ, 𝐶, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐶 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ 𝐶 ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
31 oveq1 7364 . . . . . . 7 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))
3231eqeq2d 2747 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))))
3332anbi2d 629 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))))
34 fveq2 6842 . . . . . 6 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (∗‘𝐷) = (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))
3534neeq2d 3004 . . . . 5 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷) ↔ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))))
3633, 35anbi12d 631 . . . 4 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0)))))
3736imbi1d 341 . . 3 (𝐷 = if(𝐷 ∈ ℂ, 𝐷, 0) → (((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (𝐷 · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘𝐷)) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0)) ↔ ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))))
38 ifhvhv0 29964 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
39 ifhvhv0 29964 . . . 4 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
40 0cn 11147 . . . . 5 0 ∈ ℂ
4140elimel 4555 . . . 4 if(𝐶 ∈ ℂ, 𝐶, 0) ∈ ℂ
4240elimel 4555 . . . 4 if(𝐷 ∈ ℂ, 𝐷, 0) ∈ ℂ
4338, 39, 41, 42eigorthi 30779 . . 3 ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐶 ∈ ℂ, 𝐶, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0)) = (if(𝐷 ∈ ℂ, 𝐷, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) ∧ if(𝐶 ∈ ℂ, 𝐶, 0) ≠ (∗‘if(𝐷 ∈ ℂ, 𝐷, 0))) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐵 ∈ ℋ, 𝐵, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih if(𝐵 ∈ ℋ, 𝐵, 0)) = 0))
4412, 24, 30, 37, 43dedth4h 4547 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)))
4544imp 407 1 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  ifcif 4486  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  ccj 14981  chba 29861   · csm 29863   ·ih csp 29864  0c0v 29866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-hv0cl 29945  ax-hfvmul 29947  ax-hfi 30021  ax-his1 30024  ax-his3 30026
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-cj 14984  df-re 14985  df-im 14986
This theorem is referenced by:  eighmorth  30906
  Copyright terms: Public domain W3C validator