MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfec2 Structured version   Visualization version   GIF version

Theorem dfec2 8702
Description: Alternate definition of 𝑅-coset of 𝐴. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
dfec2 (𝐴𝑉 → [𝐴]𝑅 = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem dfec2
StepHypRef Expression
1 df-ec 8701 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imasng 6072 . 2 (𝐴𝑉 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
31, 2eqtrid 2776 1 (𝐴𝑉 → [𝐴]𝑅 = {𝑦𝐴𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {cab 2701  {csn 4620   class class class wbr 5138  cima 5669  [cec 8697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ec 8701
This theorem is referenced by:  elqsecl  8761  eqglact  19096  tgpconncompeqg  23938  fvline  35611  ellines  35619  ecres2  37637
  Copyright terms: Public domain W3C validator