Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoss Structured version   Visualization version   GIF version

Theorem brcoss 37289
Description: 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
brcoss ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem brcoss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5151 . . . 4 (𝑥 = 𝐴 → (𝑢𝑅𝑥𝑢𝑅𝐴))
2 breq2 5151 . . . 4 (𝑦 = 𝐵 → (𝑢𝑅𝑦𝑢𝑅𝐵))
31, 2bi2anan9 637 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑢𝑅𝑥𝑢𝑅𝑦) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
43exbidv 1924 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
5 df-coss 37269 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
64, 5brabga 5533 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106   class class class wbr 5147  ccoss 37031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-coss 37269
This theorem is referenced by:  brcoss2  37290  brcoss3  37291  brcosscnvcoss  37292  cocossss  37294  br1cossres  37297  eldmcoss2  37317  brcosscnv  37330  trcoss  37340
  Copyright terms: Public domain W3C validator