Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoss | Structured version Visualization version GIF version |
Description: 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
brcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑢𝑅𝑥 ↔ 𝑢𝑅𝐴)) | |
2 | breq2 5074 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑢𝑅𝑦 ↔ 𝑢𝑅𝐵)) | |
3 | 1, 2 | bi2anan9 635 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
4 | 3 | exbidv 1925 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
5 | df-coss 36464 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
6 | 4, 5 | brabga 5440 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-coss 36464 |
This theorem is referenced by: brcoss2 36482 brcoss3 36483 brcosscnvcoss 36484 cocossss 36486 br1cossres 36489 eldmcoss2 36504 brcosscnv 36517 trcoss 36527 |
Copyright terms: Public domain | W3C validator |