![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoss | Structured version Visualization version GIF version |
Description: 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
brcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑢𝑅𝑥 ↔ 𝑢𝑅𝐴)) | |
2 | breq2 5170 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑢𝑅𝑦 ↔ 𝑢𝑅𝐵)) | |
3 | 1, 2 | bi2anan9 637 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
4 | 3 | exbidv 1920 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
5 | df-coss 38367 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
6 | 4, 5 | brabga 5553 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 class class class wbr 5166 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-coss 38367 |
This theorem is referenced by: brcoss2 38388 brcoss3 38389 brcosscnvcoss 38390 cocossss 38392 br1cossres 38395 eldmcoss2 38415 brcosscnv 38428 trcoss 38438 |
Copyright terms: Public domain | W3C validator |