Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoss Structured version   Visualization version   GIF version

Theorem brcoss 35712
 Description: 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
brcoss ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊

Proof of Theorem brcoss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5046 . . . 4 (𝑥 = 𝐴 → (𝑢𝑅𝑥𝑢𝑅𝐴))
2 breq2 5046 . . . 4 (𝑦 = 𝐵 → (𝑢𝑅𝑦𝑢𝑅𝐵))
31, 2bi2anan9 637 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑢𝑅𝑥𝑢𝑅𝑦) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
43exbidv 1922 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
5 df-coss 35695 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
64, 5brabga 5397 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1537  ∃wex 1780   ∈ wcel 2114   class class class wbr 5042   ≀ ccoss 35489 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pr 5306 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-rab 3134  df-v 3475  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-sn 4544  df-pr 4546  df-op 4550  df-br 5043  df-opab 5105  df-coss 35695 This theorem is referenced by:  brcoss2  35713  brcoss3  35714  brcosscnvcoss  35715  cocossss  35717  br1cossres  35720  eldmcoss2  35735  brcosscnv  35748  trcoss  35758
 Copyright terms: Public domain W3C validator