| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoss | Structured version Visualization version GIF version | ||
| Description: 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| brcoss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5128 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑢𝑅𝑥 ↔ 𝑢𝑅𝐴)) | |
| 2 | breq2 5128 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑢𝑅𝑦 ↔ 𝑢𝑅𝐵)) | |
| 3 | 1, 2 | bi2anan9 638 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
| 4 | 3 | exbidv 1921 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
| 5 | df-coss 38434 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 6 | 4, 5 | brabga 5514 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5124 ≀ ccoss 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-coss 38434 |
| This theorem is referenced by: brcoss2 38455 brcoss3 38456 brcosscnvcoss 38457 cocossss 38459 br1cossres 38462 eldmcoss2 38482 brcosscnv 38495 trcoss 38505 |
| Copyright terms: Public domain | W3C validator |