Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid2 Structured version   Visualization version   GIF version

Theorem cossssid2 38009
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.)
Assertion
Ref Expression
cossssid2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem cossssid2
StepHypRef Expression
1 df-id 5575 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21sseq2i 4007 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
3 df-coss 37952 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
43sseq1i 4006 . 2 ( ≀ 𝑅 ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
5 ssopab2bw 5548 . 2 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
62, 4, 53bitri 296 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1531  wex 1773  wss 3945   class class class wbr 5148  {copab 5210   I cid 5574  ccoss 37718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-opab 5211  df-id 5575  df-coss 37952
This theorem is referenced by:  cossssid3  38010
  Copyright terms: Public domain W3C validator