![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid2 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
Ref | Expression |
---|---|
cossssid2 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id 5574 | . . 3 ⊢ I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} | |
2 | 1 | sseq2i 4011 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}) |
3 | df-coss 37367 | . . 3 ⊢ ≀ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
4 | 3 | sseq1i 4010 | . 2 ⊢ ( ≀ 𝑅 ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}) |
5 | ssopab2bw 5547 | . 2 ⊢ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
6 | 2, 4, 5 | 3bitri 296 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 ∃wex 1781 ⊆ wss 3948 class class class wbr 5148 {copab 5210 I cid 5573 ≀ ccoss 37129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-id 5574 df-coss 37367 |
This theorem is referenced by: cossssid3 37425 |
Copyright terms: Public domain | W3C validator |