| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid2 | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) |
| Ref | Expression |
|---|---|
| cossssid2 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-id 5558 | . . 3 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 2 | 1 | sseq2i 3993 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
| 3 | df-coss 38371 | . . 3 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 4 | 3 | sseq1i 3992 | . 2 ⊢ ( ≀ 𝑅 ⊆ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} ↔ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
| 5 | ssopab2bw 5532 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
| 6 | 2, 4, 5 | 3bitri 297 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 ⊆ wss 3931 class class class wbr 5123 {copab 5185 I cid 5557 ≀ ccoss 38141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-id 5558 df-coss 38371 |
| This theorem is referenced by: cossssid3 38429 |
| Copyright terms: Public domain | W3C validator |