Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoss4 Structured version   Visualization version   GIF version

Theorem dfcoss4 38379
Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38375). (Contributed by Peter Mazsa, 12-Jul-2021.)
Assertion
Ref Expression
dfcoss4 𝑅 = ran (𝑅𝑅)

Proof of Theorem dfcoss4
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-coss 38375 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
2 rnxrn 38357 . 2 ran (𝑅𝑅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
31, 2eqtr4i 2755 1 𝑅 = ran (𝑅𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779   class class class wbr 5102  {copab 5164  ran crn 5632  cxrn 38141  ccoss 38142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-1st 7947  df-2nd 7948  df-ec 8650  df-xrn 38326  df-coss 38375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator