Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoss4 Structured version   Visualization version   GIF version

Theorem dfcoss4 37752
Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 37748). (Contributed by Peter Mazsa, 12-Jul-2021.)
Assertion
Ref Expression
dfcoss4 𝑅 = ran (𝑅𝑅)

Proof of Theorem dfcoss4
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-coss 37748 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
2 rnxrn 37735 . 2 ran (𝑅𝑅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
31, 2eqtr4i 2762 1 𝑅 = ran (𝑅𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1780   class class class wbr 5148  {copab 5210  ran crn 5677  cxrn 37509  ccoss 37510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-1st 7979  df-2nd 7980  df-ec 8711  df-xrn 37708  df-coss 37748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator