Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brin3 Structured version   Visualization version   GIF version

Theorem brin3 38352
Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.)
Assertion
Ref Expression
brin3 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆){{𝐵}}))

Proof of Theorem brin3
StepHypRef Expression
1 brin2 38351 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩))
2 opidg 4874 . . . 4 (𝐵𝑊 → ⟨𝐵, 𝐵⟩ = {{𝐵}})
32adantl 481 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐵, 𝐵⟩ = {{𝐵}})
43breq2d 5137 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩ ↔ 𝐴(𝑅𝑆){{𝐵}}))
51, 4bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆){{𝐵}}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cin 3932  {csn 4608  cop 4614   class class class wbr 5125  cxrn 38122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550  df-1st 7997  df-2nd 7998  df-xrn 38313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator