Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brin3 Structured version   Visualization version   GIF version

Theorem brin3 38426
Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.)
Assertion
Ref Expression
brin3 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆){{𝐵}}))

Proof of Theorem brin3
StepHypRef Expression
1 brin2 38425 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩))
2 opidg 4842 . . . 4 (𝐵𝑊 → ⟨𝐵, 𝐵⟩ = {{𝐵}})
32adantl 481 . . 3 ((𝐴𝑉𝐵𝑊) → ⟨𝐵, 𝐵⟩ = {{𝐵}})
43breq2d 5101 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)⟨𝐵, 𝐵⟩ ↔ 𝐴(𝑅𝑆){{𝐵}}))
51, 4bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑆)𝐵𝐴(𝑅𝑆){{𝐵}}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  cin 3899  {csn 4574  cop 4580   class class class wbr 5089  cxrn 38193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fo 6483  df-fv 6485  df-1st 7916  df-2nd 7917  df-xrn 38378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator