Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnv Structured version   Visualization version   GIF version

Theorem cosscnv 38414
Description: Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.)
Assertion
Ref Expression
cosscnv 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝑅𝑢𝑦𝑅𝑢)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem cosscnv
StepHypRef Expression
1 df-coss 38409 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
2 brcnvg 5846 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢𝑅𝑥𝑥𝑅𝑢))
32el2v 3457 . . . . 5 (𝑢𝑅𝑥𝑥𝑅𝑢)
4 brcnvg 5846 . . . . . 6 ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑢𝑅𝑦𝑦𝑅𝑢))
54el2v 3457 . . . . 5 (𝑢𝑅𝑦𝑦𝑅𝑢)
63, 5anbi12i 628 . . . 4 ((𝑢𝑅𝑥𝑢𝑅𝑦) ↔ (𝑥𝑅𝑢𝑦𝑅𝑢))
76exbii 1848 . . 3 (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) ↔ ∃𝑢(𝑥𝑅𝑢𝑦𝑅𝑢))
87opabbii 5177 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝑅𝑢𝑦𝑅𝑢)}
91, 8eqtri 2753 1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝑅𝑢𝑦𝑅𝑢)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  Vcvv 3450   class class class wbr 5110  {copab 5172  ccnv 5640  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-coss 38409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator