![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnv | Structured version Visualization version GIF version |
Description: Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.) |
Ref | Expression |
---|---|
cosscnv | ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 38392 | . 2 ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦)} | |
2 | brcnvg 5892 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢◡𝑅𝑥 ↔ 𝑥𝑅𝑢)) | |
3 | 2 | el2v 3484 | . . . . 5 ⊢ (𝑢◡𝑅𝑥 ↔ 𝑥𝑅𝑢) |
4 | brcnvg 5892 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑢◡𝑅𝑦 ↔ 𝑦𝑅𝑢)) | |
5 | 4 | el2v 3484 | . . . . 5 ⊢ (𝑢◡𝑅𝑦 ↔ 𝑦𝑅𝑢) |
6 | 3, 5 | anbi12i 628 | . . . 4 ⊢ ((𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦) ↔ (𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)) |
7 | 6 | exbii 1844 | . . 3 ⊢ (∃𝑢(𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦) ↔ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)) |
8 | 7 | opabbii 5214 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} |
9 | 1, 8 | eqtri 2762 | 1 ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 ∃wex 1775 Vcvv 3477 class class class wbr 5147 {copab 5209 ◡ccnv 5687 ≀ ccoss 38161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-cnv 5696 df-coss 38392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |