![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnv | Structured version Visualization version GIF version |
Description: Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.) |
Ref | Expression |
---|---|
cosscnv | ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 38367 | . 2 ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦)} | |
2 | brcnvg 5904 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑢◡𝑅𝑥 ↔ 𝑥𝑅𝑢)) | |
3 | 2 | el2v 3495 | . . . . 5 ⊢ (𝑢◡𝑅𝑥 ↔ 𝑥𝑅𝑢) |
4 | brcnvg 5904 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑢◡𝑅𝑦 ↔ 𝑦𝑅𝑢)) | |
5 | 4 | el2v 3495 | . . . . 5 ⊢ (𝑢◡𝑅𝑦 ↔ 𝑦𝑅𝑢) |
6 | 3, 5 | anbi12i 627 | . . . 4 ⊢ ((𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦) ↔ (𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)) |
7 | 6 | exbii 1846 | . . 3 ⊢ (∃𝑢(𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦) ↔ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)) |
8 | 7 | opabbii 5233 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢◡𝑅𝑥 ∧ 𝑢◡𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} |
9 | 1, 8 | eqtri 2768 | 1 ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 Vcvv 3488 class class class wbr 5166 {copab 5228 ◡ccnv 5699 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-coss 38367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |