![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossid | Structured version Visualization version GIF version |
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
Ref | Expression |
---|---|
cossid | ⊢ ≀ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvinv 2028 | . . . 4 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) | |
2 | ideqg 5871 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3493 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | ideqg 5871 | . . . . . . 7 ⊢ (𝑧 ∈ V → (𝑥 I 𝑧 ↔ 𝑥 = 𝑧)) | |
5 | 4 | elv 3493 | . . . . . 6 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
6 | 3, 5 | anbi12i 627 | . . . . 5 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
7 | 6 | exbii 1846 | . . . 4 ⊢ (∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
8 | 1, 7 | bitr4i 278 | . . 3 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)) |
9 | 8 | opabbii 5233 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} |
10 | df-id 5593 | . 2 ⊢ I = {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} | |
11 | df-coss 38360 | . 2 ⊢ ≀ I = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} | |
12 | 9, 10, 11 | 3eqtr4ri 2779 | 1 ⊢ ≀ I = I |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 Vcvv 3488 class class class wbr 5166 {copab 5228 I cid 5592 ≀ ccoss 38128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5701 df-rel 5702 df-coss 38360 |
This theorem is referenced by: cosscnvid 38430 eqvrelid 38738 |
Copyright terms: Public domain | W3C validator |