Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossid Structured version   Visualization version   GIF version

Theorem cossid 38191
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.)
Assertion
Ref Expression
cossid ≀ I = I

Proof of Theorem cossid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equvinv 2025 . . . 4 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
2 ideqg 5850 . . . . . . 7 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3468 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
4 ideqg 5850 . . . . . . 7 (𝑧 ∈ V → (𝑥 I 𝑧𝑥 = 𝑧))
54elv 3468 . . . . . 6 (𝑥 I 𝑧𝑥 = 𝑧)
63, 5anbi12i 626 . . . . 5 ((𝑥 I 𝑦𝑥 I 𝑧) ↔ (𝑥 = 𝑦𝑥 = 𝑧))
76exbii 1843 . . . 4 (∃𝑥(𝑥 I 𝑦𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
81, 7bitr4i 277 . . 3 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧))
98opabbii 5212 . 2 {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
10 df-id 5572 . 2 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
11 df-coss 38122 . 2 ≀ I = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
129, 10, 113eqtr4ri 2765 1 ≀ I = I
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1534  wex 1774  Vcvv 3462   class class class wbr 5145  {copab 5207   I cid 5571  ccoss 37889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-coss 38122
This theorem is referenced by:  cosscnvid  38192  eqvrelid  38500
  Copyright terms: Public domain W3C validator