Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossid Structured version   Visualization version   GIF version

Theorem cossid 36525
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.)
Assertion
Ref Expression
cossid ≀ I = I

Proof of Theorem cossid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equvinv 2033 . . . 4 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
2 ideqg 5749 . . . . . . 7 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3428 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
4 ideqg 5749 . . . . . . 7 (𝑧 ∈ V → (𝑥 I 𝑧𝑥 = 𝑧))
54elv 3428 . . . . . 6 (𝑥 I 𝑧𝑥 = 𝑧)
63, 5anbi12i 626 . . . . 5 ((𝑥 I 𝑦𝑥 I 𝑧) ↔ (𝑥 = 𝑦𝑥 = 𝑧))
76exbii 1851 . . . 4 (∃𝑥(𝑥 I 𝑦𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
81, 7bitr4i 277 . . 3 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧))
98opabbii 5137 . 2 {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
10 df-id 5480 . 2 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
11 df-coss 36464 . 2 ≀ I = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
129, 10, 113eqtr4ri 2777 1 ≀ I = I
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  Vcvv 3422   class class class wbr 5070  {copab 5132   I cid 5479  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-coss 36464
This theorem is referenced by:  cosscnvid  36526
  Copyright terms: Public domain W3C validator