Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossid | Structured version Visualization version GIF version |
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
Ref | Expression |
---|---|
cossid | ⊢ ≀ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvinv 2033 | . . . 4 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) | |
2 | ideqg 5749 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3428 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | ideqg 5749 | . . . . . . 7 ⊢ (𝑧 ∈ V → (𝑥 I 𝑧 ↔ 𝑥 = 𝑧)) | |
5 | 4 | elv 3428 | . . . . . 6 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
6 | 3, 5 | anbi12i 626 | . . . . 5 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
7 | 6 | exbii 1851 | . . . 4 ⊢ (∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
8 | 1, 7 | bitr4i 277 | . . 3 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)) |
9 | 8 | opabbii 5137 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} |
10 | df-id 5480 | . 2 ⊢ I = {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} | |
11 | df-coss 36464 | . 2 ⊢ ≀ I = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} | |
12 | 9, 10, 11 | 3eqtr4ri 2777 | 1 ⊢ ≀ I = I |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 Vcvv 3422 class class class wbr 5070 {copab 5132 I cid 5479 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-coss 36464 |
This theorem is referenced by: cosscnvid 36526 |
Copyright terms: Public domain | W3C validator |