| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cossid | Structured version Visualization version GIF version | ||
| Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
| Ref | Expression |
|---|---|
| cossid | ⊢ ≀ I = I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equvinv 2029 | . . . 4 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) | |
| 2 | ideqg 5818 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
| 3 | 2 | elv 3455 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 4 | ideqg 5818 | . . . . . . 7 ⊢ (𝑧 ∈ V → (𝑥 I 𝑧 ↔ 𝑥 = 𝑧)) | |
| 5 | 4 | elv 3455 | . . . . . 6 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
| 6 | 3, 5 | anbi12i 628 | . . . . 5 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
| 7 | 6 | exbii 1848 | . . . 4 ⊢ (∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
| 8 | 1, 7 | bitr4i 278 | . . 3 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)) |
| 9 | 8 | opabbii 5177 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} |
| 10 | df-id 5536 | . 2 ⊢ I = {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} | |
| 11 | df-coss 38409 | . 2 ⊢ ≀ I = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} | |
| 12 | 9, 10, 11 | 3eqtr4ri 2764 | 1 ⊢ ≀ I = I |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Vcvv 3450 class class class wbr 5110 {copab 5172 I cid 5535 ≀ ccoss 38176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-coss 38409 |
| This theorem is referenced by: cosscnvid 38479 eqvrelid 38788 |
| Copyright terms: Public domain | W3C validator |