![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossid | Structured version Visualization version GIF version |
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
Ref | Expression |
---|---|
cossid | ⊢ ≀ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvinv 2025 | . . . 4 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) | |
2 | ideqg 5850 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3468 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | ideqg 5850 | . . . . . . 7 ⊢ (𝑧 ∈ V → (𝑥 I 𝑧 ↔ 𝑥 = 𝑧)) | |
5 | 4 | elv 3468 | . . . . . 6 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
6 | 3, 5 | anbi12i 626 | . . . . 5 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
7 | 6 | exbii 1843 | . . . 4 ⊢ (∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
8 | 1, 7 | bitr4i 277 | . . 3 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)) |
9 | 8 | opabbii 5212 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} |
10 | df-id 5572 | . 2 ⊢ I = {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} | |
11 | df-coss 38122 | . 2 ⊢ ≀ I = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} | |
12 | 9, 10, 11 | 3eqtr4ri 2765 | 1 ⊢ ≀ I = I |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 Vcvv 3462 class class class wbr 5145 {copab 5207 I cid 5571 ≀ ccoss 37889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 df-opab 5208 df-id 5572 df-xp 5680 df-rel 5681 df-coss 38122 |
This theorem is referenced by: cosscnvid 38192 eqvrelid 38500 |
Copyright terms: Public domain | W3C validator |