Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossid | Structured version Visualization version GIF version |
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.) |
Ref | Expression |
---|---|
cossid | ⊢ ≀ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equvinv 2031 | . . . 4 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) | |
2 | ideqg 5787 | . . . . . . 7 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
3 | 2 | elv 3447 | . . . . . 6 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | ideqg 5787 | . . . . . . 7 ⊢ (𝑧 ∈ V → (𝑥 I 𝑧 ↔ 𝑥 = 𝑧)) | |
5 | 4 | elv 3447 | . . . . . 6 ⊢ (𝑥 I 𝑧 ↔ 𝑥 = 𝑧) |
6 | 3, 5 | anbi12i 627 | . . . . 5 ⊢ ((𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ (𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
7 | 6 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = 𝑧)) |
8 | 1, 7 | bitr4i 277 | . . 3 ⊢ (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)) |
9 | 8 | opabbii 5156 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} |
10 | df-id 5512 | . 2 ⊢ I = {〈𝑦, 𝑧〉 ∣ 𝑦 = 𝑧} | |
11 | df-coss 36671 | . 2 ⊢ ≀ I = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥 I 𝑦 ∧ 𝑥 I 𝑧)} | |
12 | 9, 10, 11 | 3eqtr4ri 2775 | 1 ⊢ ≀ I = I |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 Vcvv 3441 class class class wbr 5089 {copab 5151 I cid 5511 ≀ ccoss 36431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-coss 36671 |
This theorem is referenced by: cosscnvid 36741 eqvrelid 37049 |
Copyright terms: Public domain | W3C validator |