Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossid Structured version   Visualization version   GIF version

Theorem cossid 38471
Description: Cosets by the identity relation are the identity relation. (Contributed by Peter Mazsa, 16-Jan-2019.)
Assertion
Ref Expression
cossid ≀ I = I

Proof of Theorem cossid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equvinv 2029 . . . 4 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
2 ideqg 5815 . . . . . . 7 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3452 . . . . . 6 (𝑥 I 𝑦𝑥 = 𝑦)
4 ideqg 5815 . . . . . . 7 (𝑧 ∈ V → (𝑥 I 𝑧𝑥 = 𝑧))
54elv 3452 . . . . . 6 (𝑥 I 𝑧𝑥 = 𝑧)
63, 5anbi12i 628 . . . . 5 ((𝑥 I 𝑦𝑥 I 𝑧) ↔ (𝑥 = 𝑦𝑥 = 𝑧))
76exbii 1848 . . . 4 (∃𝑥(𝑥 I 𝑦𝑥 I 𝑧) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = 𝑧))
81, 7bitr4i 278 . . 3 (𝑦 = 𝑧 ↔ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧))
98opabbii 5174 . 2 {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧} = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
10 df-id 5533 . 2 I = {⟨𝑦, 𝑧⟩ ∣ 𝑦 = 𝑧}
11 df-coss 38402 . 2 ≀ I = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑥 I 𝑦𝑥 I 𝑧)}
129, 10, 113eqtr4ri 2763 1 ≀ I = I
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  Vcvv 3447   class class class wbr 5107  {copab 5169   I cid 5532  ccoss 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-coss 38402
This theorem is referenced by:  cosscnvid  38472  eqvrelid  38781
  Copyright terms: Public domain W3C validator