| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coss1cnvres | Structured version Visualization version GIF version | ||
| Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| Ref | Expression |
|---|---|
| coss1cnvres | ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss 38409 | . 2 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} | |
| 2 | br1cnvres 38265 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
| 3 | 2 | elv 3455 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
| 4 | br1cnvres 38265 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
| 5 | 4 | elv 3455 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥)) |
| 6 | 3, 5 | anbi12i 628 | . . . . . 6 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) |
| 7 | an4 656 | . . . . . 6 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
| 8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
| 10 | 19.42v 1953 | . . . 4 ⊢ (∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) | |
| 11 | 9, 10 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
| 12 | 11 | opabbii 5177 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
| 13 | 1, 12 | eqtri 2753 | 1 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 {copab 5172 ◡ccnv 5640 ↾ cres 5643 ≀ ccoss 38176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-res 5653 df-coss 38409 |
| This theorem is referenced by: coss2cnvepres 38416 |
| Copyright terms: Public domain | W3C validator |