| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coss1cnvres | Structured version Visualization version GIF version | ||
| Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| Ref | Expression |
|---|---|
| coss1cnvres | ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss 38519 | . 2 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} | |
| 2 | br1cnvres 38312 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
| 3 | 2 | elv 3441 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
| 4 | br1cnvres 38312 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
| 5 | 4 | elv 3441 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥)) |
| 6 | 3, 5 | anbi12i 628 | . . . . . 6 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) |
| 7 | an4 656 | . . . . . 6 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
| 8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
| 9 | 8 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
| 10 | 19.42v 1954 | . . . 4 ⊢ (∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) | |
| 11 | 9, 10 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
| 12 | 11 | opabbii 5160 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
| 13 | 1, 12 | eqtri 2754 | 1 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5093 {copab 5155 ◡ccnv 5618 ↾ cres 5621 ≀ ccoss 38228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-res 5631 df-coss 38519 |
| This theorem is referenced by: coss2cnvepres 38526 |
| Copyright terms: Public domain | W3C validator |