Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coss1cnvres Structured version   Visualization version   GIF version

Theorem coss1cnvres 38393
Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.)
Assertion
Ref Expression
coss1cnvres (𝑅𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢𝑅𝑥𝑣𝑅𝑥))}
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑢,𝑅,𝑣,𝑥

Proof of Theorem coss1cnvres
StepHypRef Expression
1 df-coss 38387 . 2 (𝑅𝐴) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑥(𝑥(𝑅𝐴)𝑢𝑥(𝑅𝐴)𝑣)}
2 br1cnvres 38245 . . . . . . . 8 (𝑥 ∈ V → (𝑥(𝑅𝐴)𝑢 ↔ (𝑢𝐴𝑢𝑅𝑥)))
32elv 3468 . . . . . . 7 (𝑥(𝑅𝐴)𝑢 ↔ (𝑢𝐴𝑢𝑅𝑥))
4 br1cnvres 38245 . . . . . . . 8 (𝑥 ∈ V → (𝑥(𝑅𝐴)𝑣 ↔ (𝑣𝐴𝑣𝑅𝑥)))
54elv 3468 . . . . . . 7 (𝑥(𝑅𝐴)𝑣 ↔ (𝑣𝐴𝑣𝑅𝑥))
63, 5anbi12i 628 . . . . . 6 ((𝑥(𝑅𝐴)𝑢𝑥(𝑅𝐴)𝑣) ↔ ((𝑢𝐴𝑢𝑅𝑥) ∧ (𝑣𝐴𝑣𝑅𝑥)))
7 an4 656 . . . . . 6 (((𝑢𝐴𝑣𝐴) ∧ (𝑢𝑅𝑥𝑣𝑅𝑥)) ↔ ((𝑢𝐴𝑢𝑅𝑥) ∧ (𝑣𝐴𝑣𝑅𝑥)))
86, 7bitr4i 278 . . . . 5 ((𝑥(𝑅𝐴)𝑢𝑥(𝑅𝐴)𝑣) ↔ ((𝑢𝐴𝑣𝐴) ∧ (𝑢𝑅𝑥𝑣𝑅𝑥)))
98exbii 1847 . . . 4 (∃𝑥(𝑥(𝑅𝐴)𝑢𝑥(𝑅𝐴)𝑣) ↔ ∃𝑥((𝑢𝐴𝑣𝐴) ∧ (𝑢𝑅𝑥𝑣𝑅𝑥)))
10 19.42v 1952 . . . 4 (∃𝑥((𝑢𝐴𝑣𝐴) ∧ (𝑢𝑅𝑥𝑣𝑅𝑥)) ↔ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢𝑅𝑥𝑣𝑅𝑥)))
119, 10bitri 275 . . 3 (∃𝑥(𝑥(𝑅𝐴)𝑢𝑥(𝑅𝐴)𝑣) ↔ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢𝑅𝑥𝑣𝑅𝑥)))
1211opabbii 5190 . 2 {⟨𝑢, 𝑣⟩ ∣ ∃𝑥(𝑥(𝑅𝐴)𝑢𝑥(𝑅𝐴)𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢𝑅𝑥𝑣𝑅𝑥))}
131, 12eqtri 2757 1 (𝑅𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢𝑅𝑥𝑣𝑅𝑥))}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  Vcvv 3463   class class class wbr 5123  {copab 5185  ccnv 5664  cres 5667  ccoss 38157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-res 5677  df-coss 38387
This theorem is referenced by:  coss2cnvepres  38394
  Copyright terms: Public domain W3C validator