![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss1cnvres | Structured version Visualization version GIF version |
Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
Ref | Expression |
---|---|
coss1cnvres | ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 38392 | . 2 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} | |
2 | br1cnvres 38250 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
3 | 2 | elv 3482 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
4 | br1cnvres 38250 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
5 | 4 | elv 3482 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥)) |
6 | 3, 5 | anbi12i 628 | . . . . . 6 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) |
7 | an4 656 | . . . . . 6 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
9 | 8 | exbii 1844 | . . . 4 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
10 | 19.42v 1950 | . . . 4 ⊢ (∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) | |
11 | 9, 10 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
12 | 11 | opabbii 5214 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
13 | 1, 12 | eqtri 2762 | 1 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 {copab 5209 ◡ccnv 5687 ↾ cres 5690 ≀ ccoss 38161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-res 5700 df-coss 38392 |
This theorem is referenced by: coss2cnvepres 38399 |
Copyright terms: Public domain | W3C validator |