![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss1cnvres | Structured version Visualization version GIF version |
Description: Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
Ref | Expression |
---|---|
coss1cnvres | ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 38367 | . 2 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} | |
2 | br1cnvres 38225 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥))) | |
3 | 2 | elv 3493 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑢 ↔ (𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥)) |
4 | br1cnvres 38225 | . . . . . . . 8 ⊢ (𝑥 ∈ V → (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
5 | 4 | elv 3493 | . . . . . . 7 ⊢ (𝑥◡(𝑅 ↾ 𝐴)𝑣 ↔ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥)) |
6 | 3, 5 | anbi12i 627 | . . . . . 6 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) |
7 | an4 655 | . . . . . 6 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑢𝑅𝑥) ∧ (𝑣 ∈ 𝐴 ∧ 𝑣𝑅𝑥))) | |
8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ ((𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
9 | 8 | exbii 1846 | . . . 4 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
10 | 19.42v 1953 | . . . 4 ⊢ (∃𝑥((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ (𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) | |
11 | 9, 10 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))) |
12 | 11 | opabbii 5233 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ∃𝑥(𝑥◡(𝑅 ↾ 𝐴)𝑢 ∧ 𝑥◡(𝑅 ↾ 𝐴)𝑣)} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
13 | 1, 12 | eqtri 2768 | 1 ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 {copab 5228 ◡ccnv 5699 ↾ cres 5702 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-res 5712 df-coss 38367 |
This theorem is referenced by: coss2cnvepres 38374 |
Copyright terms: Public domain | W3C validator |