Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss3 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 36537). (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
dfcoss3 | ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg 5788 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
2 | 1 | el2v 3440 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
4 | 3 | exbii 1850 | . . 3 ⊢ (∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
5 | 4 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
6 | df-co 5598 | . 2 ⊢ (𝑅 ∘ ◡𝑅) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} | |
7 | df-coss 36537 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
8 | 5, 6, 7 | 3eqtr4ri 2777 | 1 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 Vcvv 3432 class class class wbr 5074 {copab 5136 ◡ccnv 5588 ∘ ccom 5593 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-co 5598 df-coss 36537 |
This theorem is referenced by: cossex 36542 dmcoss3 36571 funALTVfun 36809 |
Copyright terms: Public domain | W3C validator |