Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoss3 Structured version   Visualization version   GIF version

Theorem dfcoss3 36467
Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 36464). (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
dfcoss3 𝑅 = (𝑅𝑅)

Proof of Theorem dfcoss3
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcnvg 5777 . . . . . 6 ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥𝑅𝑢𝑢𝑅𝑥))
21el2v 3430 . . . . 5 (𝑥𝑅𝑢𝑢𝑅𝑥)
32anbi1i 623 . . . 4 ((𝑥𝑅𝑢𝑢𝑅𝑦) ↔ (𝑢𝑅𝑥𝑢𝑅𝑦))
43exbii 1851 . . 3 (∃𝑢(𝑥𝑅𝑢𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
54opabbii 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝑅𝑢𝑢𝑅𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
6 df-co 5589 . 2 (𝑅𝑅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝑅𝑢𝑢𝑅𝑦)}
7 df-coss 36464 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
85, 6, 73eqtr4ri 2777 1 𝑅 = (𝑅𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  Vcvv 3422   class class class wbr 5070  {copab 5132  ccnv 5579  ccom 5584  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-co 5589  df-coss 36464
This theorem is referenced by:  cossex  36469  dmcoss3  36498  funALTVfun  36736
  Copyright terms: Public domain W3C validator