![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss3 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of cosets by 𝑅 (cf. the comment of df-coss 34712). (Contributed by Peter Mazsa, 27-Dec-2018.) |
Ref | Expression |
---|---|
dfcoss3 | ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg 5538 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
2 | 1 | el2v 34541 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
3 | 2 | anbi1i 617 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
4 | 3 | exbii 1947 | . . 3 ⊢ (∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
5 | 4 | opabbii 4942 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
6 | df-co 5355 | . 2 ⊢ (𝑅 ∘ ◡𝑅) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} | |
7 | df-coss 34712 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
8 | 5, 6, 7 | 3eqtr4ri 2860 | 1 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1656 ∃wex 1878 Vcvv 3414 class class class wbr 4875 {copab 4937 ◡ccnv 5345 ∘ ccom 5350 ≀ ccoss 34519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-cnv 5354 df-co 5355 df-coss 34712 |
This theorem is referenced by: cossex 34717 dmcoss3 34746 |
Copyright terms: Public domain | W3C validator |