| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38429). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| dfcoss3 | ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg 5859 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
| 2 | 1 | el2v 3466 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 5 | 4 | opabbii 5186 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
| 6 | df-co 5663 | . 2 ⊢ (𝑅 ∘ ◡𝑅) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} | |
| 7 | df-coss 38429 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2769 | 1 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Vcvv 3459 class class class wbr 5119 {copab 5181 ◡ccnv 5653 ∘ ccom 5658 ≀ ccoss 38199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-co 5663 df-coss 38429 |
| This theorem is referenced by: cossex 38437 dmcoss3 38471 funALTVfun 38716 |
| Copyright terms: Public domain | W3C validator |