| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38375). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| dfcoss3 | ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg 5833 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
| 2 | 1 | el2v 3451 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 5 | 4 | opabbii 5169 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
| 6 | df-co 5640 | . 2 ⊢ (𝑅 ∘ ◡𝑅) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} | |
| 7 | df-coss 38375 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2763 | 1 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Vcvv 3444 class class class wbr 5102 {copab 5164 ◡ccnv 5630 ∘ ccom 5635 ≀ ccoss 38142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-co 5640 df-coss 38375 |
| This theorem is referenced by: cossex 38383 dmcoss3 38417 funALTVfun 38663 |
| Copyright terms: Public domain | W3C validator |