Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoss3 Structured version   Visualization version   GIF version

Theorem dfcoss3 36277
Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 36274). (Contributed by Peter Mazsa, 27-Dec-2018.)
Assertion
Ref Expression
dfcoss3 𝑅 = (𝑅𝑅)

Proof of Theorem dfcoss3
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcnvg 5748 . . . . . 6 ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥𝑅𝑢𝑢𝑅𝑥))
21el2v 3416 . . . . 5 (𝑥𝑅𝑢𝑢𝑅𝑥)
32anbi1i 627 . . . 4 ((𝑥𝑅𝑢𝑢𝑅𝑦) ↔ (𝑢𝑅𝑥𝑢𝑅𝑦))
43exbii 1855 . . 3 (∃𝑢(𝑥𝑅𝑢𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
54opabbii 5120 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝑅𝑢𝑢𝑅𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
6 df-co 5560 . 2 (𝑅𝑅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥𝑅𝑢𝑢𝑅𝑦)}
7 df-coss 36274 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
85, 6, 73eqtr4ri 2776 1 𝑅 = (𝑅𝑅)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wex 1787  Vcvv 3408   class class class wbr 5053  {copab 5115  ccnv 5550  ccom 5555  ccoss 36070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-cnv 5559  df-co 5560  df-coss 36274
This theorem is referenced by:  cossex  36279  dmcoss3  36308  funALTVfun  36546
  Copyright terms: Public domain W3C validator