| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38456). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| Ref | Expression |
|---|---|
| dfcoss3 | ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg 5818 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
| 2 | 1 | el2v 3443 | . . . . 5 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 4 | 3 | exbii 1849 | . . 3 ⊢ (∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 5 | 4 | opabbii 5156 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
| 6 | df-co 5623 | . 2 ⊢ (𝑅 ∘ ◡𝑅) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥◡𝑅𝑢 ∧ 𝑢𝑅𝑦)} | |
| 7 | df-coss 38456 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2765 | 1 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 Vcvv 3436 class class class wbr 5089 {copab 5151 ◡ccnv 5613 ∘ ccom 5618 ≀ ccoss 38223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-co 5623 df-coss 38456 |
| This theorem is referenced by: cossex 38464 dmcoss3 38498 funALTVfun 38744 |
| Copyright terms: Public domain | W3C validator |