Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoss2 Structured version   Visualization version   GIF version

Theorem dfcoss2 38404
Description: Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8674). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.)
Assertion
Ref Expression
dfcoss2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem dfcoss2
StepHypRef Expression
1 df-coss 38402 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
2 elecALTV 38255 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝑢]𝑅𝑢𝑅𝑥))
32el2v 3454 . . . . 5 (𝑥 ∈ [𝑢]𝑅𝑢𝑅𝑥)
4 elecALTV 38255 . . . . . 6 ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑢]𝑅𝑢𝑅𝑦))
54el2v 3454 . . . . 5 (𝑦 ∈ [𝑢]𝑅𝑢𝑅𝑦)
63, 5anbi12i 628 . . . 4 ((𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝑥𝑢𝑅𝑦))
76exbii 1848 . . 3 (∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
87opabbii 5174 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
91, 8eqtr4i 2755 1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447   class class class wbr 5107  {copab 5169  [cec 8669  ccoss 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-coss 38402
This theorem is referenced by:  coss0  38470
  Copyright terms: Public domain W3C validator