Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoss2 Structured version   Visualization version   GIF version

Theorem dfcoss2 37750
Description: Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8712). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.)
Assertion
Ref Expression
dfcoss2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem dfcoss2
StepHypRef Expression
1 df-coss 37748 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
2 elecALTV 37601 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝑢]𝑅𝑢𝑅𝑥))
32el2v 3481 . . . . 5 (𝑥 ∈ [𝑢]𝑅𝑢𝑅𝑥)
4 elecALTV 37601 . . . . . 6 ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑢]𝑅𝑢𝑅𝑦))
54el2v 3481 . . . . 5 (𝑦 ∈ [𝑢]𝑅𝑢𝑅𝑦)
63, 5anbi12i 626 . . . 4 ((𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝑥𝑢𝑅𝑦))
76exbii 1849 . . 3 (∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
87opabbii 5215 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
91, 8eqtr4i 2762 1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  Vcvv 3473   class class class wbr 5148  {copab 5210  [cec 8707  ccoss 37510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8711  df-coss 37748
This theorem is referenced by:  coss0  37816
  Copyright terms: Public domain W3C validator