| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8625). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
| Ref | Expression |
|---|---|
| dfcoss2 | ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss 38456 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
| 2 | elecALTV 38309 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥)) | |
| 3 | 2 | el2v 3443 | . . . . 5 ⊢ (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥) |
| 4 | elecALTV 38309 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦)) | |
| 5 | 4 | el2v 3443 | . . . . 5 ⊢ (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦) |
| 6 | 3, 5 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 7 | 6 | exbii 1849 | . . 3 ⊢ (∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
| 8 | 7 | opabbii 5156 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
| 9 | 1, 8 | eqtr4i 2757 | 1 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 {copab 5151 [cec 8620 ≀ ccoss 38223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 df-coss 38456 |
| This theorem is referenced by: coss0 38524 |
| Copyright terms: Public domain | W3C validator |