![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8766). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
Ref | Expression |
---|---|
dfcoss2 | ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 38367 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
2 | elecALTV 38222 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥)) | |
3 | 2 | el2v 3495 | . . . . 5 ⊢ (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥) |
4 | elecALTV 38222 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦)) | |
5 | 4 | el2v 3495 | . . . . 5 ⊢ (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦) |
6 | 3, 5 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
7 | 6 | exbii 1846 | . . 3 ⊢ (∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
8 | 7 | opabbii 5233 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
9 | 1, 8 | eqtr4i 2771 | 1 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 {copab 5228 [cec 8761 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-coss 38367 |
This theorem is referenced by: coss0 38435 |
Copyright terms: Public domain | W3C validator |