Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcoss2 Structured version   Visualization version   GIF version

Theorem dfcoss2 36466
Description: Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8459). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.)
Assertion
Ref Expression
dfcoss2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem dfcoss2
StepHypRef Expression
1 df-coss 36464 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
2 elecALTV 36332 . . . . . 6 ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝑢]𝑅𝑢𝑅𝑥))
32el2v 3430 . . . . 5 (𝑥 ∈ [𝑢]𝑅𝑢𝑅𝑥)
4 elecALTV 36332 . . . . . 6 ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑢]𝑅𝑢𝑅𝑦))
54el2v 3430 . . . . 5 (𝑦 ∈ [𝑢]𝑅𝑢𝑅𝑦)
63, 5anbi12i 626 . . . 4 ((𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝑥𝑢𝑅𝑦))
76exbii 1851 . . 3 (∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦))
87opabbii 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
91, 8eqtr4i 2769 1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅𝑦 ∈ [𝑢]𝑅)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422   class class class wbr 5070  {copab 5132  [cec 8454  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-coss 36464
This theorem is referenced by:  coss0  36524
  Copyright terms: Public domain W3C validator