![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8747). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
Ref | Expression |
---|---|
dfcoss2 | ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 38393 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
2 | elecALTV 38248 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥)) | |
3 | 2 | el2v 3485 | . . . . 5 ⊢ (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥) |
4 | elecALTV 38248 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦)) | |
5 | 4 | el2v 3485 | . . . . 5 ⊢ (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦) |
6 | 3, 5 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
7 | 6 | exbii 1845 | . . 3 ⊢ (∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
8 | 7 | opabbii 5215 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
9 | 1, 8 | eqtr4i 2766 | 1 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 {copab 5210 [cec 8742 ≀ ccoss 38162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-coss 38393 |
This theorem is referenced by: coss0 38461 |
Copyright terms: Public domain | W3C validator |