Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfcoss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8501). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
Ref | Expression |
---|---|
dfcoss2 | ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-coss 36537 | . 2 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | |
2 | elecALTV 36405 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥)) | |
3 | 2 | el2v 3440 | . . . . 5 ⊢ (𝑥 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑥) |
4 | elecALTV 36405 | . . . . . 6 ⊢ ((𝑢 ∈ V ∧ 𝑦 ∈ V) → (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦)) | |
5 | 4 | el2v 3440 | . . . . 5 ⊢ (𝑦 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝑦) |
6 | 3, 5 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
7 | 6 | exbii 1850 | . . 3 ⊢ (∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)) |
8 | 7 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
9 | 1, 8 | eqtr4i 2769 | 1 ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 {copab 5136 [cec 8496 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-coss 36537 |
This theorem is referenced by: coss0 36597 |
Copyright terms: Public domain | W3C validator |