MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ec Structured version   Visualization version   GIF version

Definition df-ec 8458
Description: Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an equivalence relation (i.e. when Er 𝑅; see dfer2 8457). In this case, 𝐴 is a representative (member) of the equivalence class [𝐴]𝑅, which contains all sets that are equivalent to 𝐴. Definition of [Enderton] p. 57 uses the notation [𝐴] (subscript) 𝑅, although we simply follow the brackets by 𝑅 since we don't have subscripted expressions. For an alternate definition, see dfec2 8459. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-ec [𝐴]𝑅 = (𝑅 “ {𝐴})

Detailed syntax breakdown of Definition df-ec
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cec 8454 . 2 class [𝐴]𝑅
41csn 4558 . . 3 class {𝐴}
52, 4cima 5583 . 2 class (𝑅 “ {𝐴})
63, 5wceq 1539 1 wff [𝐴]𝑅 = (𝑅 “ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  dfec2  8459  ecexg  8460  ecexr  8461  eceq1  8494  eceq2  8496  elecg  8499  ecss  8502  ecidsn  8509  uniqs  8524  ecqs  8528  ecinxp  8539  lsmsnorb  31481  elecALTV  36332  uniqsALTV  36391  ecexALTV  36393  ec0  36426  prjspeclsp  40372
  Copyright terms: Public domain W3C validator