MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ec Structured version   Visualization version   GIF version

Definition df-ec 8308
Description: Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an equivalence relation (i.e. when Er 𝑅; see dfer2 8307). In this case, 𝐴 is a representative (member) of the equivalence class [𝐴]𝑅, which contains all sets that are equivalent to 𝐴. Definition of [Enderton] p. 57 uses the notation [𝐴] (subscript) 𝑅, although we simply follow the brackets by 𝑅 since we don't have subscripted expressions. For an alternate definition, see dfec2 8309. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-ec [𝐴]𝑅 = (𝑅 “ {𝐴})

Detailed syntax breakdown of Definition df-ec
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cec 8304 . 2 class [𝐴]𝑅
41csn 4526 . . 3 class {𝐴}
52, 4cima 5532 . 2 class (𝑅 “ {𝐴})
63, 5wceq 1539 1 wff [𝐴]𝑅 = (𝑅 “ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  dfec2  8309  ecexg  8310  ecexr  8311  eceq1  8344  eceq2  8346  elecg  8349  ecss  8352  ecidsn  8359  uniqs  8374  ecqs  8378  ecinxp  8389  lsmsnorb  31114  elecALTV  36003  uniqsALTV  36062  ecexALTV  36064  ec0  36097  prjspeclsp  39994
  Copyright terms: Public domain W3C validator