MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ec Structured version   Visualization version   GIF version

Definition df-ec 8676
Description: Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an equivalence relation (i.e. when Er 𝑅; see dfer2 8675). In this case, 𝐴 is a representative (member) of the equivalence class [𝐴]𝑅, which contains all sets that are equivalent to 𝐴. Definition of [Enderton] p. 57 uses the notation [𝐴] (subscript) 𝑅, although we simply follow the brackets by 𝑅 since we don't have subscripted expressions. For an alternate definition, see dfec2 8677. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-ec [𝐴]𝑅 = (𝑅 “ {𝐴})

Detailed syntax breakdown of Definition df-ec
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cec 8672 . 2 class [𝐴]𝑅
41csn 4592 . . 3 class {𝐴}
52, 4cima 5644 . 2 class (𝑅 “ {𝐴})
63, 5wceq 1540 1 wff [𝐴]𝑅 = (𝑅 “ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  dfec2  8677  ecexg  8678  ecexr  8679  eceq1  8713  eceq2  8715  elecg  8718  ecss  8725  ecidsn  8732  uniqs  8750  ecqs  8755  ecinxp  8768  eqg0subgecsn  19136  lsmsnorb  33369  elecALTV  38262  ec0  38358  prjspeclsp  42607
  Copyright terms: Public domain W3C validator