MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ec Structured version   Visualization version   GIF version

Definition df-ec 7979
Description: Define the 𝑅-coset of 𝐴. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of 𝐴 modulo 𝑅 when 𝑅 is an equivalence relation (i.e. when Er 𝑅; see dfer2 7978). In this case, 𝐴 is a representative (member) of the equivalence class [𝐴]𝑅, which contains all sets that are equivalent to 𝐴. Definition of [Enderton] p. 57 uses the notation [𝐴] (subscript) 𝑅, although we simply follow the brackets by 𝑅 since we don't have subscripted expressions. For an alternate definition, see dfec2 7980. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
df-ec [𝐴]𝑅 = (𝑅 “ {𝐴})

Detailed syntax breakdown of Definition df-ec
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2cec 7975 . 2 class [𝐴]𝑅
41csn 4368 . . 3 class {𝐴}
52, 4cima 5312 . 2 class (𝑅 “ {𝐴})
63, 5wceq 1637 1 wff [𝐴]𝑅 = (𝑅 “ {𝐴})
Colors of variables: wff setvar class
This definition is referenced by:  dfec2  7980  ecexg  7981  ecexr  7982  eceq1  8015  eceq2  8017  elecg  8018  ecss  8021  ecidsn  8028  uniqs  8040  ecqs  8044  ecinxp  8055  elecALTV  34346  uniqsALTV  34414  ec0  34442
  Copyright terms: Public domain W3C validator