![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecexALTV | Structured version Visualization version GIF version |
Description: Existence of a coset, like ecexg 8735 but with a weaker antecedent: only the restricion of 𝑅 by the singleton of 𝐴 needs to be a set, not 𝑅 itself, see e.g. eccnvepex 37839. (Contributed by Peter Mazsa, 22-Feb-2023.) |
Ref | Expression |
---|---|
ecexALTV | ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8733 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | snex 5437 | . . 3 ⊢ {𝐴} ∈ V | |
3 | imaexALTV 37834 | . . . 4 ⊢ ((𝑅 ∈ V ∨ ((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V)) → (𝑅 “ {𝐴}) ∈ V) | |
4 | 3 | olcs 874 | . . 3 ⊢ (((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝑅 “ {𝐴}) ∈ V) |
5 | 2, 4 | mpan2 689 | . 2 ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → (𝑅 “ {𝐴}) ∈ V) |
6 | 1, 5 | eqeltrid 2833 | 1 ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 Vcvv 3473 {csn 4632 ↾ cres 5684 “ cima 5685 [cec 8729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8733 df-qs 8737 |
This theorem is referenced by: eccnvepex 37839 |
Copyright terms: Public domain | W3C validator |