| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ecexALTV | Structured version Visualization version GIF version | ||
| Description: Existence of a coset, like ecexg 8731 but with a weaker antecedent: only the restriction of 𝑅 by the singleton of 𝐴 needs to be a set, not 𝑅 itself, see e.g. eccnvepex 38295. (Contributed by Peter Mazsa, 22-Feb-2023.) |
| Ref | Expression |
|---|---|
| ecexALTV | ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8729 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | snex 5416 | . . 3 ⊢ {𝐴} ∈ V | |
| 3 | imaexALTV 38290 | . . . 4 ⊢ ((𝑅 ∈ V ∨ ((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V)) → (𝑅 “ {𝐴}) ∈ V) | |
| 4 | 3 | olcs 876 | . . 3 ⊢ (((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝑅 “ {𝐴}) ∈ V) |
| 5 | 2, 4 | mpan2 691 | . 2 ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → (𝑅 “ {𝐴}) ∈ V) |
| 6 | 1, 5 | eqeltrid 2837 | 1 ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3463 {csn 4606 ↾ cres 5667 “ cima 5668 [cec 8725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ec 8729 df-qs 8733 |
| This theorem is referenced by: eccnvepex 38295 |
| Copyright terms: Public domain | W3C validator |