Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecexALTV Structured version   Visualization version   GIF version

Theorem ecexALTV 38291
Description: Existence of a coset, like ecexg 8731 but with a weaker antecedent: only the restriction of 𝑅 by the singleton of 𝐴 needs to be a set, not 𝑅 itself, see e.g. eccnvepex 38295. (Contributed by Peter Mazsa, 22-Feb-2023.)
Assertion
Ref Expression
ecexALTV ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V)

Proof of Theorem ecexALTV
StepHypRef Expression
1 df-ec 8729 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 snex 5416 . . 3 {𝐴} ∈ V
3 imaexALTV 38290 . . . 4 ((𝑅 ∈ V ∨ ((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V)) → (𝑅 “ {𝐴}) ∈ V)
43olcs 876 . . 3 (((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝑅 “ {𝐴}) ∈ V)
52, 4mpan2 691 . 2 ((𝑅 ↾ {𝐴}) ∈ 𝑉 → (𝑅 “ {𝐴}) ∈ V)
61, 5eqeltrid 2837 1 ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3463  {csn 4606  cres 5667  cima 5668  [cec 8725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729  df-qs 8733
This theorem is referenced by:  eccnvepex  38295
  Copyright terms: Public domain W3C validator