![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecexALTV | Structured version Visualization version GIF version |
Description: Existence of a coset, like ecexg 8706 but with a weaker antecedent: only the restricion of 𝑅 by the singleton of 𝐴 needs to be a set, not 𝑅 itself, see e.g. eccnvepex 37716. (Contributed by Peter Mazsa, 22-Feb-2023.) |
Ref | Expression |
---|---|
ecexALTV | ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8704 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | snex 5424 | . . 3 ⊢ {𝐴} ∈ V | |
3 | imaexALTV 37711 | . . . 4 ⊢ ((𝑅 ∈ V ∨ ((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V)) → (𝑅 “ {𝐴}) ∈ V) | |
4 | 3 | olcs 873 | . . 3 ⊢ (((𝑅 ↾ {𝐴}) ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝑅 “ {𝐴}) ∈ V) |
5 | 2, 4 | mpan2 688 | . 2 ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → (𝑅 “ {𝐴}) ∈ V) |
6 | 1, 5 | eqeltrid 2831 | 1 ⊢ ((𝑅 ↾ {𝐴}) ∈ 𝑉 → [𝐴]𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 Vcvv 3468 {csn 4623 ↾ cres 5671 “ cima 5672 [cec 8700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ec 8704 df-qs 8708 |
This theorem is referenced by: eccnvepex 37716 |
Copyright terms: Public domain | W3C validator |