Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4572 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | imaeq2d 5972 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
3 | df-ec 8509 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
4 | df-ec 8509 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {csn 4562 “ cima 5593 [cec 8505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-xp 5596 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-ec 8509 |
This theorem is referenced by: eceq1d 8546 ecelqsg 8570 snec 8578 qliftfun 8600 qliftfuns 8602 qliftval 8604 ecoptocl 8605 eroveu 8610 erov 8612 divsfval 17267 qusghm 18880 sylow1lem3 19214 efgi2 19340 frgpup3lem 19392 znzrhval 20763 qustgpopn 23280 qustgplem 23281 elpi1i 24218 pi1xfrf 24225 pi1xfrval 24226 pi1xfrcnvlem 24228 pi1cof 24231 pi1coval 24232 vitalilem3 24783 tgjustr 26844 qusker 31558 qusvscpbl 31560 qusscaval 31561 eceq1i 36419 prtlem9 36885 prtlem11 36887 |
Copyright terms: Public domain | W3C validator |