| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4585 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 6013 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 8630 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 8630 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {csn 4575 “ cima 5622 [cec 8626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 |
| This theorem is referenced by: eceq1d 8668 ecelqs 8698 snec 8708 qliftfun 8732 qliftfuns 8734 qliftval 8736 ecoptocl 8737 eroveu 8742 erov 8744 divsfval 17453 qusghm 19169 sylow1lem3 19514 efgi2 19639 frgpup3lem 19691 rngqiprngimfv 21237 rngqiprngimf1 21239 rngqiprngimfo 21240 pzriprnglem11 21430 znzrhval 21485 qustgpopn 24036 qustgplem 24037 elpi1i 24974 pi1xfrf 24981 pi1xfrval 24982 pi1xfrcnvlem 24984 pi1cof 24987 pi1coval 24988 vitalilem3 25539 tgjustr 28453 qusker 33321 qusvscpbl 33323 qusvsval 33324 algextdeg 33759 eceq1i 38337 disjressuc2 38456 disjlem14 38917 prtlem9 38984 prtlem11 38986 aks6d1c6lem5 42291 aks5lem3a 42303 |
| Copyright terms: Public domain | W3C validator |