| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4602 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 6034 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 8676 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 8676 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4592 “ cima 5644 [cec 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 |
| This theorem is referenced by: eceq1d 8714 ecelqs 8744 snec 8754 qliftfun 8778 qliftfuns 8780 qliftval 8782 ecoptocl 8783 eroveu 8788 erov 8790 divsfval 17517 qusghm 19194 sylow1lem3 19537 efgi2 19662 frgpup3lem 19714 rngqiprngimfv 21215 rngqiprngimf1 21217 rngqiprngimfo 21218 pzriprnglem11 21408 znzrhval 21463 qustgpopn 24014 qustgplem 24015 elpi1i 24953 pi1xfrf 24960 pi1xfrval 24961 pi1xfrcnvlem 24963 pi1cof 24966 pi1coval 24967 vitalilem3 25518 tgjustr 28408 qusker 33327 qusvscpbl 33329 qusvsval 33330 algextdeg 33722 eceq1i 38273 disjressuc2 38381 disjlem14 38797 prtlem9 38864 prtlem11 38866 aks6d1c6lem5 42172 aks5lem3a 42184 |
| Copyright terms: Public domain | W3C validator |