| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4611 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 6047 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 8721 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 8721 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4601 “ cima 5657 [cec 8717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ec 8721 |
| This theorem is referenced by: eceq1d 8759 ecelqsg 8786 snec 8794 qliftfun 8816 qliftfuns 8818 qliftval 8820 ecoptocl 8821 eroveu 8826 erov 8828 divsfval 17561 qusghm 19238 sylow1lem3 19581 efgi2 19706 frgpup3lem 19758 rngqiprngimfv 21259 rngqiprngimf1 21261 rngqiprngimfo 21262 pzriprnglem11 21452 znzrhval 21507 qustgpopn 24058 qustgplem 24059 elpi1i 24997 pi1xfrf 25004 pi1xfrval 25005 pi1xfrcnvlem 25007 pi1cof 25010 pi1coval 25011 vitalilem3 25563 tgjustr 28453 qusker 33364 qusvscpbl 33366 qusvsval 33367 algextdeg 33759 eceq1i 38294 disjressuc2 38406 disjlem14 38816 prtlem9 38882 prtlem11 38884 aks6d1c6lem5 42190 aks5lem3a 42202 |
| Copyright terms: Public domain | W3C validator |