![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4640 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | imaeq2d 6079 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
3 | df-ec 8745 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
4 | df-ec 8745 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 {csn 4630 “ cima 5691 [cec 8741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ec 8745 |
This theorem is referenced by: eceq1d 8783 ecelqsg 8810 snec 8818 qliftfun 8840 qliftfuns 8842 qliftval 8844 ecoptocl 8845 eroveu 8850 erov 8852 divsfval 17593 qusghm 19285 sylow1lem3 19632 efgi2 19757 frgpup3lem 19809 rngqiprngimfv 21325 rngqiprngimf1 21327 rngqiprngimfo 21328 pzriprnglem11 21519 znzrhval 21582 qustgpopn 24143 qustgplem 24144 elpi1i 25092 pi1xfrf 25099 pi1xfrval 25100 pi1xfrcnvlem 25102 pi1cof 25105 pi1coval 25106 vitalilem3 25658 tgjustr 28496 qusker 33356 qusvscpbl 33358 qusvsval 33359 algextdeg 33730 eceq1i 38257 disjressuc2 38369 disjlem14 38779 prtlem9 38845 prtlem11 38847 aks6d1c6lem5 42158 aks5lem3a 42170 |
Copyright terms: Public domain | W3C validator |