![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4377 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | imaeq2d 5682 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
3 | df-ec 7983 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
4 | df-ec 7983 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2857 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 {csn 4367 “ cima 5314 [cec 7979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-rab 3097 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-if 4277 df-sn 4368 df-pr 4370 df-op 4374 df-br 4843 df-opab 4905 df-xp 5317 df-cnv 5319 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-ec 7983 |
This theorem is referenced by: eceq1d 8020 ecelqsg 8039 snec 8047 qliftfun 8069 qliftfuns 8071 qliftval 8073 ecoptocl 8074 eroveu 8080 erov 8082 divsfval 16519 qusghm 18007 sylow1lem3 18325 efgi2 18448 frgpup3lem 18502 znzrhval 20213 qustgpopn 22248 qustgplem 22249 elpi1i 23170 pi1xfrf 23177 pi1xfrval 23178 pi1xfrcnvlem 23180 pi1cof 23183 pi1coval 23184 vitalilem3 23715 eceq1i 34529 prtlem9 34878 prtlem11 34880 |
Copyright terms: Public domain | W3C validator |