| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4586 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 6009 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 8624 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 8624 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {csn 4576 “ cima 5619 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 |
| This theorem is referenced by: eceq1d 8662 ecelqs 8692 snec 8702 qliftfun 8726 qliftfuns 8728 qliftval 8730 ecoptocl 8731 eroveu 8736 erov 8738 divsfval 17451 qusghm 19168 sylow1lem3 19513 efgi2 19638 frgpup3lem 19690 rngqiprngimfv 21236 rngqiprngimf1 21238 rngqiprngimfo 21239 pzriprnglem11 21429 znzrhval 21484 qustgpopn 24036 qustgplem 24037 elpi1i 24974 pi1xfrf 24981 pi1xfrval 24982 pi1xfrcnvlem 24984 pi1cof 24987 pi1coval 24988 vitalilem3 25539 tgjustr 28453 qusker 33312 qusvscpbl 33314 qusvsval 33315 algextdeg 33736 eceq1i 38318 disjressuc2 38426 disjlem14 38842 prtlem9 38909 prtlem11 38911 aks6d1c6lem5 42216 aks5lem3a 42228 |
| Copyright terms: Public domain | W3C validator |