| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4589 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 6015 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 8634 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 8634 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4579 “ cima 5626 [cec 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 |
| This theorem is referenced by: eceq1d 8672 ecelqs 8702 snec 8712 qliftfun 8736 qliftfuns 8738 qliftval 8740 ecoptocl 8741 eroveu 8746 erov 8748 divsfval 17469 qusghm 19152 sylow1lem3 19497 efgi2 19622 frgpup3lem 19674 rngqiprngimfv 21223 rngqiprngimf1 21225 rngqiprngimfo 21226 pzriprnglem11 21416 znzrhval 21471 qustgpopn 24023 qustgplem 24024 elpi1i 24962 pi1xfrf 24969 pi1xfrval 24970 pi1xfrcnvlem 24972 pi1cof 24975 pi1coval 24976 vitalilem3 25527 tgjustr 28437 qusker 33299 qusvscpbl 33301 qusvsval 33302 algextdeg 33694 eceq1i 38254 disjressuc2 38362 disjlem14 38778 prtlem9 38845 prtlem11 38847 aks6d1c6lem5 42153 aks5lem3a 42165 |
| Copyright terms: Public domain | W3C validator |