| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4599 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | imaeq2d 6031 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
| 3 | df-ec 8673 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
| 4 | df-ec 8673 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4589 “ cima 5641 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: eceq1d 8711 ecelqs 8741 snec 8751 qliftfun 8775 qliftfuns 8777 qliftval 8779 ecoptocl 8780 eroveu 8785 erov 8787 divsfval 17510 qusghm 19187 sylow1lem3 19530 efgi2 19655 frgpup3lem 19707 rngqiprngimfv 21208 rngqiprngimf1 21210 rngqiprngimfo 21211 pzriprnglem11 21401 znzrhval 21456 qustgpopn 24007 qustgplem 24008 elpi1i 24946 pi1xfrf 24953 pi1xfrval 24954 pi1xfrcnvlem 24956 pi1cof 24959 pi1coval 24960 vitalilem3 25511 tgjustr 28401 qusker 33320 qusvscpbl 33322 qusvsval 33323 algextdeg 33715 eceq1i 38266 disjressuc2 38374 disjlem14 38790 prtlem9 38857 prtlem11 38859 aks6d1c6lem5 42165 aks5lem3a 42177 |
| Copyright terms: Public domain | W3C validator |