Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4535 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | imaeq2d 5906 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
3 | df-ec 8307 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
4 | df-ec 8307 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2818 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 {csn 4525 “ cima 5531 [cec 8303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-xp 5534 df-cnv 5536 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ec 8307 |
This theorem is referenced by: eceq1d 8344 ecelqsg 8368 snec 8376 qliftfun 8398 qliftfuns 8400 qliftval 8402 ecoptocl 8403 eroveu 8408 erov 8410 divsfval 16891 qusghm 18475 sylow1lem3 18805 efgi2 18931 frgpup3lem 18983 znzrhval 20327 qustgpopn 22833 qustgplem 22834 elpi1i 23760 pi1xfrf 23767 pi1xfrval 23768 pi1xfrcnvlem 23770 pi1cof 23773 pi1coval 23774 vitalilem3 24323 tgjustr 26380 qusker 31082 qusvscpbl 31084 qusscaval 31085 eceq1i 36007 prtlem9 36474 prtlem11 36476 |
Copyright terms: Public domain | W3C validator |