Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4568 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | imaeq2d 5958 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
3 | df-ec 8458 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
4 | df-ec 8458 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {csn 4558 “ cima 5583 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: eceq1d 8495 ecelqsg 8519 snec 8527 qliftfun 8549 qliftfuns 8551 qliftval 8553 ecoptocl 8554 eroveu 8559 erov 8561 divsfval 17175 qusghm 18786 sylow1lem3 19120 efgi2 19246 frgpup3lem 19298 znzrhval 20666 qustgpopn 23179 qustgplem 23180 elpi1i 24115 pi1xfrf 24122 pi1xfrval 24123 pi1xfrcnvlem 24125 pi1cof 24128 pi1coval 24129 vitalilem3 24679 tgjustr 26739 qusker 31451 qusvscpbl 31453 qusscaval 31454 eceq1i 36338 prtlem9 36805 prtlem11 36807 |
Copyright terms: Public domain | W3C validator |