![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eceq1 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 | ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4658 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | imaeq2d 6089 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 “ {𝐴}) = (𝐶 “ {𝐵})) |
3 | df-ec 8765 | . 2 ⊢ [𝐴]𝐶 = (𝐶 “ {𝐴}) | |
4 | df-ec 8765 | . 2 ⊢ [𝐵]𝐶 = (𝐶 “ {𝐵}) | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → [𝐴]𝐶 = [𝐵]𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {csn 4648 “ cima 5703 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: eceq1d 8803 ecelqsg 8830 snec 8838 qliftfun 8860 qliftfuns 8862 qliftval 8864 ecoptocl 8865 eroveu 8870 erov 8872 divsfval 17607 qusghm 19295 sylow1lem3 19642 efgi2 19767 frgpup3lem 19819 rngqiprngimfv 21331 rngqiprngimf1 21333 rngqiprngimfo 21334 pzriprnglem11 21525 znzrhval 21588 qustgpopn 24149 qustgplem 24150 elpi1i 25098 pi1xfrf 25105 pi1xfrval 25106 pi1xfrcnvlem 25108 pi1cof 25111 pi1coval 25112 vitalilem3 25664 tgjustr 28500 qusker 33342 qusvscpbl 33344 qusvsval 33345 algextdeg 33716 eceq1i 38232 disjressuc2 38344 disjlem14 38754 prtlem9 38820 prtlem11 38822 aks6d1c6lem5 42134 aks5lem3a 42146 |
Copyright terms: Public domain | W3C validator |