![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elecALTV | Structured version Visualization version GIF version |
Description: Elementhood in the 𝑅-coset of 𝐴. Theorem 72 of [Suppes] p. 82. (I think we should replace elecg 8807 with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
elecALTV | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng 6118 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
2 | df-ec 8765 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
3 | 2 | eleq2i 2836 | . 2 ⊢ (𝐵 ∈ [𝐴]𝑅 ↔ 𝐵 ∈ (𝑅 “ {𝐴})) |
4 | df-br 5167 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
5 | 1, 3, 4 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 {csn 4648 〈cop 4654 class class class wbr 5166 “ cima 5703 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: eldm4 38230 exan3 38250 exanres3 38252 ecin0 38308 dfcoss2 38369 eldm1cossres2 38417 eqvrelth 38567 eqvreldisj 38570 eqvrelqsel 38572 erimeq2 38634 disjlem19 38757 |
Copyright terms: Public domain | W3C validator |