Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecALTV Structured version   Visualization version   GIF version

Theorem elecALTV 38242
Description: Elementhood in the 𝑅-coset of 𝐴. Theorem 72 of [Suppes] p. 82. (I think we should replace elecg 8771 with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecALTV ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))

Proof of Theorem elecALTV
StepHypRef Expression
1 elimasng 6087 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 df-ec 8729 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
32eleq2i 2825 . 2 (𝐵 ∈ [𝐴]𝑅𝐵 ∈ (𝑅 “ {𝐴}))
4 df-br 5124 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
51, 3, 43bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  {csn 4606  cop 4612   class class class wbr 5123  cima 5668  [cec 8725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ec 8729
This theorem is referenced by:  eldm4  38250  exan3  38270  exanres3  38272  ecin0  38328  dfcoss2  38389  eldm1cossres2  38437  eqvrelth  38587  eqvreldisj  38590  eqvrelqsel  38592  erimeq2  38654  disjlem19  38777
  Copyright terms: Public domain W3C validator