Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecALTV Structured version   Visualization version   GIF version

Theorem elecALTV 36332
Description: Elementhood in the 𝑅-coset of 𝐴. Theorem 72 of [Suppes] p. 82. (I think we should replace elecg 8499 with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecALTV ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))

Proof of Theorem elecALTV
StepHypRef Expression
1 elimasng 5985 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 df-ec 8458 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
32eleq2i 2830 . 2 (𝐵 ∈ [𝐴]𝑅𝐵 ∈ (𝑅 “ {𝐴}))
4 df-br 5071 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
51, 3, 43bitr4g 313 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  {csn 4558  cop 4564   class class class wbr 5070  cima 5583  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  eldm4  36336  exan3  36356  exanres3  36358  ecin0  36411  dfcoss2  36466  eldm1cossres2  36506  eqvrelth  36651  eqvreldisj  36654  eqvrelqsel  36656  erim2  36716
  Copyright terms: Public domain W3C validator