Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecALTV Structured version   Visualization version   GIF version

Theorem elecALTV 38289
Description: Elementhood in the 𝑅-coset of 𝐴. Theorem 72 of [Suppes] p. 82. (I think we should replace elecg 8768 with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecALTV ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))

Proof of Theorem elecALTV
StepHypRef Expression
1 elimasng 6081 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 df-ec 8726 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
32eleq2i 2827 . 2 (𝐵 ∈ [𝐴]𝑅𝐵 ∈ (𝑅 “ {𝐴}))
4 df-br 5125 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
51, 3, 43bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {csn 4606  cop 4612   class class class wbr 5124  cima 5662  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726
This theorem is referenced by:  eldm4  38297  exan3  38317  exanres3  38319  ecin0  38375  dfcoss2  38436  eldm1cossres2  38484  eqvrelth  38634  eqvreldisj  38637  eqvrelqsel  38639  erimeq2  38701  disjlem19  38824
  Copyright terms: Public domain W3C validator