| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elecALTV | Structured version Visualization version GIF version | ||
| Description: Elementhood in the 𝑅-coset of 𝐴. Theorem 72 of [Suppes] p. 82. (I think we should replace elecg 8771 with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| elecALTV | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng 6087 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
| 2 | df-ec 8729 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 3 | 2 | eleq2i 2825 | . 2 ⊢ (𝐵 ∈ [𝐴]𝑅 ↔ 𝐵 ∈ (𝑅 “ {𝐴})) |
| 4 | df-br 5124 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 5 | 1, 3, 4 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 {csn 4606 〈cop 4612 class class class wbr 5123 “ cima 5668 [cec 8725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ec 8729 |
| This theorem is referenced by: eldm4 38250 exan3 38270 exanres3 38272 ecin0 38328 dfcoss2 38389 eldm1cossres2 38437 eqvrelth 38587 eqvreldisj 38590 eqvrelqsel 38592 erimeq2 38654 disjlem19 38777 |
| Copyright terms: Public domain | W3C validator |