Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elecALTV | Structured version Visualization version GIF version |
Description: Elementhood in the 𝑅-coset of 𝐴. Theorem 72 of [Suppes] p. 82. (I think we should replace elecg 8499 with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
elecALTV | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng 5985 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 〈𝐴, 𝐵〉 ∈ 𝑅)) | |
2 | df-ec 8458 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
3 | 2 | eleq2i 2830 | . 2 ⊢ (𝐵 ∈ [𝐴]𝑅 ↔ 𝐵 ∈ (𝑅 “ {𝐴})) |
4 | df-br 5071 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
5 | 1, 3, 4 | 3bitr4g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 {csn 4558 〈cop 4564 class class class wbr 5070 “ cima 5583 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: eldm4 36336 exan3 36356 exanres3 36358 ecin0 36411 dfcoss2 36466 eldm1cossres2 36506 eqvrelth 36651 eqvreldisj 36654 eqvrelqsel 36656 erim2 36716 |
Copyright terms: Public domain | W3C validator |