Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elecALTV Structured version   Visualization version   GIF version

Theorem elecALTV 38228
Description: Elementhood in the 𝑅-coset of 𝐴. Theorem 72 of [Suppes] p. 82. (I think we should replace elecg 8692 with this original form of Suppes. Peter Mazsa). (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecALTV ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))

Proof of Theorem elecALTV
StepHypRef Expression
1 elimasng 6049 . 2 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅))
2 df-ec 8650 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
32eleq2i 2820 . 2 (𝐵 ∈ [𝐴]𝑅𝐵 ∈ (𝑅 “ {𝐴}))
4 df-br 5103 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
51, 3, 43bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ [𝐴]𝑅𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {csn 4585  cop 4591   class class class wbr 5102  cima 5634  [cec 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650
This theorem is referenced by:  eldm4  38236  exan3  38255  exanres3  38257  ecin0  38307  dfcoss2  38377  eldm1cossres2  38425  eqvrelth  38575  eqvreldisj  38578  eqvrelqsel  38580  erimeq2  38643  disjlem19  38766
  Copyright terms: Public domain W3C validator