Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniqsALTV Structured version   Visualization version   GIF version

Theorem uniqsALTV 35695
 Description: The union of a quotient set, like uniqs 8353 but with a weaker antecedent: only the restricion of 𝑅 by 𝐴 needs to be a set, not 𝑅 itself, see e.g. cnvepima 35703. (Contributed by Peter Mazsa, 20-Jun-2019.)
Assertion
Ref Expression
uniqsALTV ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))

Proof of Theorem uniqsALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecex2 35694 . . . . 5 ((𝑅𝐴) ∈ 𝑉 → (𝑥𝐴 → [𝑥]𝑅 ∈ V))
21ralrimiv 3176 . . . 4 ((𝑅𝐴) ∈ 𝑉 → ∀𝑥𝐴 [𝑥]𝑅 ∈ V)
3 dfiun2g 4941 . . . 4 (∀𝑥𝐴 [𝑥]𝑅 ∈ V → 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
42, 3syl 17 . . 3 ((𝑅𝐴) ∈ 𝑉 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
54eqcomd 2830 . 2 ((𝑅𝐴) ∈ 𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = 𝑥𝐴 [𝑥]𝑅)
6 df-qs 8291 . . 3 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
76unieqi 4837 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
8 df-ec 8287 . . . . 5 [𝑥]𝑅 = (𝑅 “ {𝑥})
98a1i 11 . . . 4 (𝑥𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥}))
109iuneq2i 4926 . . 3 𝑥𝐴 [𝑥]𝑅 = 𝑥𝐴 (𝑅 “ {𝑥})
11 imaiun 6996 . . 3 (𝑅 𝑥𝐴 {𝑥}) = 𝑥𝐴 (𝑅 “ {𝑥})
12 iunid 4970 . . . 4 𝑥𝐴 {𝑥} = 𝐴
1312imaeq2i 5914 . . 3 (𝑅 𝑥𝐴 {𝑥}) = (𝑅𝐴)
1410, 11, 133eqtr2ri 2854 . 2 (𝑅𝐴) = 𝑥𝐴 [𝑥]𝑅
155, 7, 143eqtr4g 2884 1 ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  {cab 2802  ∀wral 3133  ∃wrex 3134  Vcvv 3480  {csn 4550  ∪ cuni 4824  ∪ ciun 4905   ↾ cres 5544   “ cima 5545  [cec 8283   / cqs 8284 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-xp 5548  df-rel 5549  df-cnv 5550  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ec 8287  df-qs 8291 This theorem is referenced by:  imaexALTV  35696  rnresequniqs  35698  cnvepima  35703
 Copyright terms: Public domain W3C validator