Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniqsALTV Structured version   Visualization version   GIF version

Theorem uniqsALTV 37136
Description: The union of a quotient set, like uniqs 8767 but with a weaker antecedent: only the restricion of 𝑅 by 𝐴 needs to be a set, not 𝑅 itself, see e.g. cnvepima 37144. (Contributed by Peter Mazsa, 20-Jun-2019.)
Assertion
Ref Expression
uniqsALTV ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))

Proof of Theorem uniqsALTV
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecex2 37135 . . . . 5 ((𝑅𝐴) ∈ 𝑉 → (𝑥𝐴 → [𝑥]𝑅 ∈ V))
21ralrimiv 3146 . . . 4 ((𝑅𝐴) ∈ 𝑉 → ∀𝑥𝐴 [𝑥]𝑅 ∈ V)
3 dfiun2g 5032 . . . 4 (∀𝑥𝐴 [𝑥]𝑅 ∈ V → 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
42, 3syl 17 . . 3 ((𝑅𝐴) ∈ 𝑉 𝑥𝐴 [𝑥]𝑅 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅})
54eqcomd 2739 . 2 ((𝑅𝐴) ∈ 𝑉 {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅} = 𝑥𝐴 [𝑥]𝑅)
6 df-qs 8705 . . 3 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
76unieqi 4920 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
8 df-ec 8701 . . . . 5 [𝑥]𝑅 = (𝑅 “ {𝑥})
98a1i 11 . . . 4 (𝑥𝐴 → [𝑥]𝑅 = (𝑅 “ {𝑥}))
109iuneq2i 5017 . . 3 𝑥𝐴 [𝑥]𝑅 = 𝑥𝐴 (𝑅 “ {𝑥})
11 imaiun 7239 . . 3 (𝑅 𝑥𝐴 {𝑥}) = 𝑥𝐴 (𝑅 “ {𝑥})
12 iunid 5062 . . . 4 𝑥𝐴 {𝑥} = 𝐴
1312imaeq2i 6055 . . 3 (𝑅 𝑥𝐴 {𝑥}) = (𝑅𝐴)
1410, 11, 133eqtr2ri 2768 . 2 (𝑅𝐴) = 𝑥𝐴 [𝑥]𝑅
155, 7, 143eqtr4g 2798 1 ((𝑅𝐴) ∈ 𝑉 (𝐴 / 𝑅) = (𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  Vcvv 3475  {csn 4627   cuni 4907   ciun 4996  cres 5677  cima 5678  [cec 8697   / cqs 8698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8701  df-qs 8705
This theorem is referenced by:  imaexALTV  37137  rnresequniqs  37139  cnvepima  37144
  Copyright terms: Public domain W3C validator