| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elecg | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| elecg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng 6060 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) |
| 3 | df-ec 8673 | . . 3 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 4 | 3 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐴 ∈ (𝑅 “ {𝐵})) |
| 5 | df-br 5108 | . 2 ⊢ (𝐵𝑅𝐴 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | |
| 6 | 2, 4, 5 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {csn 4589 〈cop 4595 class class class wbr 5107 “ cima 5641 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: ecref 8716 elec 8717 relelec 8718 ecdmn0 8723 erth 8725 erdisj 8728 qsel 8769 ghmqusnsglem1 19212 ghmquskerlem1 19215 orbsta 19245 sylow2alem1 19547 sylow2blem1 19550 sylow3lem3 19559 efgi2 19655 rngqiprngfulem2 21222 rngqipring1 21226 tgpconncompeqg 23999 xmetec 24322 blpnfctr 24324 xmetresbl 24325 xrsblre 24700 ecxpid 33332 lsmsnorb 33362 ecin0 38334 eqvrelth 38602 qsalrel 42228 |
| Copyright terms: Public domain | W3C validator |