MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elecg Structured version   Visualization version   GIF version

Theorem elecg 8715
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 6060 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
21ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
3 df-ec 8673 . . 3 [𝐵]𝑅 = (𝑅 “ {𝐵})
43eleq2i 2820 . 2 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ (𝑅 “ {𝐵}))
5 df-br 5108 . 2 (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
62, 4, 53bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {csn 4589  cop 4595   class class class wbr 5107  cima 5641  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673
This theorem is referenced by:  ecref  8716  elec  8717  relelec  8718  ecdmn0  8723  erth  8725  erdisj  8728  qsel  8769  ghmqusnsglem1  19212  ghmquskerlem1  19215  orbsta  19245  sylow2alem1  19547  sylow2blem1  19550  sylow3lem3  19559  efgi2  19655  rngqiprngfulem2  21222  rngqipring1  21226  tgpconncompeqg  23999  xmetec  24322  blpnfctr  24324  xmetresbl  24325  xrsblre  24700  ecxpid  33332  lsmsnorb  33362  ecin0  38334  eqvrelth  38602  qsalrel  42228
  Copyright terms: Public domain W3C validator