MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elecg Structured version   Visualization version   GIF version

Theorem elecg 8541
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 5996 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
21ancoms 459 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
3 df-ec 8500 . . 3 [𝐵]𝑅 = (𝑅 “ {𝐵})
43eleq2i 2830 . 2 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ (𝑅 “ {𝐵}))
5 df-br 5075 . 2 (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
62, 4, 53bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  {csn 4561  cop 4567   class class class wbr 5074  cima 5592  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500
This theorem is referenced by:  elec  8542  relelec  8543  ecdmn0  8545  erth  8547  erdisj  8550  qsel  8585  orbsta  18919  sylow2alem1  19222  sylow2blem1  19225  sylow3lem3  19234  efgi2  19331  tgpconncompeqg  23263  xmetec  23587  blpnfctr  23589  xmetresbl  23590  xrsblre  23974  ecxpid  31556  lsmsnorb  31579  ecin0  36484  eqvrelth  36724  qsalrel  40215
  Copyright terms: Public domain W3C validator