MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elecg Structured version   Visualization version   GIF version

Theorem elecg 8676
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 6044 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
21ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
3 df-ec 8634 . . 3 [𝐵]𝑅 = (𝑅 “ {𝐵})
43eleq2i 2820 . 2 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ (𝑅 “ {𝐵}))
5 df-br 5096 . 2 (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
62, 4, 53bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {csn 4579  cop 4585   class class class wbr 5095  cima 5626  [cec 8630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634
This theorem is referenced by:  ecref  8677  elec  8678  relelec  8679  ecdmn0  8684  erth  8686  erdisj  8689  qsel  8730  ghmqusnsglem1  19178  ghmquskerlem1  19181  orbsta  19211  sylow2alem1  19515  sylow2blem1  19518  sylow3lem3  19527  efgi2  19623  rngqiprngfulem2  21238  rngqipring1  21242  tgpconncompeqg  24016  xmetec  24339  blpnfctr  24341  xmetresbl  24342  xrsblre  24717  ecxpid  33317  lsmsnorb  33347  ecin0  38339  eqvrelth  38607  qsalrel  42233
  Copyright terms: Public domain W3C validator