Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elecg | Structured version Visualization version GIF version |
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
elecg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng 5985 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) |
3 | df-ec 8458 | . . 3 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
4 | 3 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐴 ∈ (𝑅 “ {𝐵})) |
5 | df-br 5071 | . 2 ⊢ (𝐵𝑅𝐴 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | |
6 | 2, 4, 5 | 3bitr4g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 {csn 4558 〈cop 4564 class class class wbr 5070 “ cima 5583 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: elec 8500 relelec 8501 ecdmn0 8503 erth 8505 erdisj 8508 qsel 8543 orbsta 18834 sylow2alem1 19137 sylow2blem1 19140 sylow3lem3 19149 efgi2 19246 tgpconncompeqg 23171 xmetec 23495 blpnfctr 23497 xmetresbl 23498 xrsblre 23880 ecxpid 31458 lsmsnorb 31481 ecin0 36411 eqvrelth 36651 qsalrel 40141 |
Copyright terms: Public domain | W3C validator |