MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elecg Structured version   Visualization version   GIF version

Theorem elecg 8768
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
elecg ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))

Proof of Theorem elecg
StepHypRef Expression
1 elimasng 6081 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
21ancoms 458 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅))
3 df-ec 8726 . . 3 [𝐵]𝑅 = (𝑅 “ {𝐵})
43eleq2i 2827 . 2 (𝐴 ∈ [𝐵]𝑅𝐴 ∈ (𝑅 “ {𝐵}))
5 df-br 5125 . 2 (𝐵𝑅𝐴 ↔ ⟨𝐵, 𝐴⟩ ∈ 𝑅)
62, 4, 53bitr4g 314 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {csn 4606  cop 4612   class class class wbr 5124  cima 5662  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726
This theorem is referenced by:  ecref  8769  elec  8770  relelec  8771  ecdmn0  8773  erth  8775  erdisj  8778  qsel  8815  ghmqusnsglem1  19268  ghmquskerlem1  19271  orbsta  19301  sylow2alem1  19603  sylow2blem1  19606  sylow3lem3  19615  efgi2  19711  rngqiprngfulem2  21278  rngqipring1  21282  tgpconncompeqg  24055  xmetec  24378  blpnfctr  24380  xmetresbl  24381  xrsblre  24756  ecxpid  33381  lsmsnorb  33411  ecin0  38375  eqvrelth  38634  qsalrel  42258
  Copyright terms: Public domain W3C validator