| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elecg | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| elecg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng 6049 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) |
| 3 | df-ec 8650 | . . 3 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 4 | 3 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐴 ∈ (𝑅 “ {𝐵})) |
| 5 | df-br 5103 | . 2 ⊢ (𝐵𝑅𝐴 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | |
| 6 | 2, 4, 5 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {csn 4585 〈cop 4591 class class class wbr 5102 “ cima 5634 [cec 8646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ec 8650 |
| This theorem is referenced by: ecref 8693 elec 8694 relelec 8695 ecdmn0 8700 erth 8702 erdisj 8705 qsel 8746 ghmqusnsglem1 19188 ghmquskerlem1 19191 orbsta 19221 sylow2alem1 19523 sylow2blem1 19526 sylow3lem3 19535 efgi2 19631 rngqiprngfulem2 21198 rngqipring1 21202 tgpconncompeqg 23975 xmetec 24298 blpnfctr 24300 xmetresbl 24301 xrsblre 24676 ecxpid 33305 lsmsnorb 33335 ecin0 38307 eqvrelth 38575 qsalrel 42201 |
| Copyright terms: Public domain | W3C validator |