| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elecg | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| elecg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng 6033 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) |
| 3 | df-ec 8619 | . . 3 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 4 | 3 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐴 ∈ (𝑅 “ {𝐵})) |
| 5 | df-br 5087 | . 2 ⊢ (𝐵𝑅𝐴 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | |
| 6 | 2, 4, 5 | 3bitr4g 314 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 {csn 4571 〈cop 4577 class class class wbr 5086 “ cima 5614 [cec 8615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ec 8619 |
| This theorem is referenced by: ecref 8662 elec 8663 relelec 8664 ecdmn0 8669 erth 8671 erdisj 8674 qsel 8715 ghmqusnsglem1 19187 ghmquskerlem1 19190 orbsta 19220 sylow2alem1 19524 sylow2blem1 19527 sylow3lem3 19536 efgi2 19632 rngqiprngfulem2 21244 rngqipring1 21248 tgpconncompeqg 24022 xmetec 24344 blpnfctr 24346 xmetresbl 24347 xrsblre 24722 ecxpid 33318 lsmsnorb 33348 ecin0 38380 eqvrelth 38648 qsalrel 42273 |
| Copyright terms: Public domain | W3C validator |