Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elecg | Structured version Visualization version GIF version |
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
elecg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng 6026 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
2 | 1 | ancoms 459 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝑅 “ {𝐵}) ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) |
3 | df-ec 8571 | . . 3 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
4 | 3 | eleq2i 2828 | . 2 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐴 ∈ (𝑅 “ {𝐵})) |
5 | df-br 5093 | . 2 ⊢ (𝐵𝑅𝐴 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) | |
6 | 2, 4, 5 | 3bitr4g 313 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2105 {csn 4573 〈cop 4579 class class class wbr 5092 “ cima 5623 [cec 8567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ec 8571 |
This theorem is referenced by: elec 8613 relelec 8614 ecdmn0 8616 erth 8618 erdisj 8621 qsel 8656 orbsta 19015 sylow2alem1 19318 sylow2blem1 19321 sylow3lem3 19330 efgi2 19426 tgpconncompeqg 23369 xmetec 23693 blpnfctr 23695 xmetresbl 23696 xrsblre 24080 ecxpid 31852 lsmsnorb 31876 ecin0 36626 eqvrelth 36886 qsalrel 40475 |
Copyright terms: Public domain | W3C validator |