Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsnorb Structured version   Visualization version   GIF version

Theorem lsmsnorb 30965
Description: The sumset of a group with a single element is the element's orbit by the group action. See gaorb 18430. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
lsmsnorb.1 𝐵 = (Base‘𝐺)
lsmsnorb.2 + = (+g𝐺)
lsmsnorb.3 = (LSSum‘𝐺)
lsmsnorb.4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
lsmsnorb.5 (𝜑𝐺 ∈ Mnd)
lsmsnorb.6 (𝜑𝐴𝐵)
lsmsnorb.7 (𝜑𝑋𝐵)
Assertion
Ref Expression
lsmsnorb (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Distinct variable groups:   + ,𝑔,𝑥,𝑦   𝐴,𝑔,𝑥,𝑦   𝑥,𝐵,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔)   𝐵(𝑔)   (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)   𝐺(𝑥,𝑦,𝑔)

Proof of Theorem lsmsnorb
Dummy variables 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmsnorb.5 . . . 4 (𝜑𝐺 ∈ Mnd)
2 lsmsnorb.6 . . . 4 (𝜑𝐴𝐵)
3 lsmsnorb.7 . . . . 5 (𝜑𝑋𝐵)
43snssd 4735 . . . 4 (𝜑 → {𝑋} ⊆ 𝐵)
5 lsmsnorb.1 . . . . 5 𝐵 = (Base‘𝐺)
6 lsmsnorb.3 . . . . 5 = (LSSum‘𝐺)
75, 6lsmssv 18761 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝐴 {𝑋}) ⊆ 𝐵)
81, 2, 4, 7syl3anc 1366 . . 3 (𝜑 → (𝐴 {𝑋}) ⊆ 𝐵)
98sselda 3960 . 2 ((𝜑𝑘 ∈ (𝐴 {𝑋})) → 𝑘𝐵)
10 df-ec 8284 . . . 4 [𝑋] = ( “ {𝑋})
11 imassrn 5933 . . . . . 6 ( “ {𝑋}) ⊆ ran
12 lsmsnorb.4 . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
1312rneqi 5800 . . . . . . 7 ran = ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
14 rnopab 5819 . . . . . . . 8 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} = {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
15 vex 3494 . . . . . . . . . . . . . 14 𝑥 ∈ V
16 vex 3494 . . . . . . . . . . . . . 14 𝑦 ∈ V
1715, 16prss 4746 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1817biimpri 230 . . . . . . . . . . . 12 ({𝑥, 𝑦} ⊆ 𝐵 → (𝑥𝐵𝑦𝐵))
1918simprd 498 . . . . . . . . . . 11 ({𝑥, 𝑦} ⊆ 𝐵𝑦𝐵)
2019adantr 483 . . . . . . . . . 10 (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2120exlimiv 1930 . . . . . . . . 9 (∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2221abssi 4039 . . . . . . . 8 {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2314, 22eqsstri 3994 . . . . . . 7 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2413, 23eqsstri 3994 . . . . . 6 ran 𝐵
2511, 24sstri 3969 . . . . 5 ( “ {𝑋}) ⊆ 𝐵
2625a1i 11 . . . 4 (𝜑 → ( “ {𝑋}) ⊆ 𝐵)
2710, 26eqsstrid 4008 . . 3 (𝜑 → [𝑋] 𝐵)
2827sselda 3960 . 2 ((𝜑𝑘 ∈ [𝑋] ) → 𝑘𝐵)
293anim1i 616 . . . . . 6 ((𝜑𝑘𝐵) → (𝑋𝐵𝑘𝐵))
3029biantrurd 535 . . . . 5 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
31 df-3an 1084 . . . . 5 ((𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘) ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘))
3230, 31syl6bbr 291 . . . 4 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
3312gaorb 18430 . . . 4 (𝑋 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘))
3432, 33syl6rbbr 292 . . 3 ((𝜑𝑘𝐵) → (𝑋 𝑘 ↔ ∃𝐴 ( + 𝑋) = 𝑘))
35 vex 3494 . . . 4 𝑘 ∈ V
363adantr 483 . . . 4 ((𝜑𝑘𝐵) → 𝑋𝐵)
37 elecg 8325 . . . 4 ((𝑘 ∈ V ∧ 𝑋𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
3835, 36, 37sylancr 589 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
39 lsmsnorb.2 . . . . 5 + = (+g𝐺)
401adantr 483 . . . . 5 ((𝜑𝑘𝐵) → 𝐺 ∈ Mnd)
412adantr 483 . . . . 5 ((𝜑𝑘𝐵) → 𝐴𝐵)
425, 39, 6, 40, 41, 36elgrplsmsn 30964 . . . 4 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 𝑘 = ( + 𝑋)))
43 eqcom 2827 . . . . 5 (𝑘 = ( + 𝑋) ↔ ( + 𝑋) = 𝑘)
4443rexbii 3246 . . . 4 (∃𝐴 𝑘 = ( + 𝑋) ↔ ∃𝐴 ( + 𝑋) = 𝑘)
4542, 44syl6bb 289 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 ( + 𝑋) = 𝑘))
4634, 38, 453bitr4rd 314 . 2 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ 𝑘 ∈ [𝑋] ))
479, 28, 46eqrdav 2819 1 (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wex 1779  wcel 2113  {cab 2798  wrex 3138  Vcvv 3491  wss 3929  {csn 4560  {cpr 4562   class class class wbr 5059  {copab 5121  ran crn 5549  cima 5551  cfv 6348  (class class class)co 7149  [cec 8280  Basecbs 16476  +gcplusg 16558  Mndcmnd 17904  LSSumclsm 18752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-ec 8284  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-lsm 18754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator