Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsnorb Structured version   Visualization version   GIF version

Theorem lsmsnorb 32775
Description: The sumset of a group with a single element is the element's orbit by the group action. See gaorb 19212. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
lsmsnorb.1 𝐵 = (Base‘𝐺)
lsmsnorb.2 + = (+g𝐺)
lsmsnorb.3 = (LSSum‘𝐺)
lsmsnorb.4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
lsmsnorb.5 (𝜑𝐺 ∈ Mnd)
lsmsnorb.6 (𝜑𝐴𝐵)
lsmsnorb.7 (𝜑𝑋𝐵)
Assertion
Ref Expression
lsmsnorb (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Distinct variable groups:   + ,𝑔,𝑥,𝑦   𝐴,𝑔,𝑥,𝑦   𝑥,𝐵,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔)   𝐵(𝑔)   (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)   𝐺(𝑥,𝑦,𝑔)

Proof of Theorem lsmsnorb
Dummy variables 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmsnorb.5 . . . 4 (𝜑𝐺 ∈ Mnd)
2 lsmsnorb.6 . . . 4 (𝜑𝐴𝐵)
3 lsmsnorb.7 . . . . 5 (𝜑𝑋𝐵)
43snssd 4811 . . . 4 (𝜑 → {𝑋} ⊆ 𝐵)
5 lsmsnorb.1 . . . . 5 𝐵 = (Base‘𝐺)
6 lsmsnorb.3 . . . . 5 = (LSSum‘𝐺)
75, 6lsmssv 19552 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝐴 {𝑋}) ⊆ 𝐵)
81, 2, 4, 7syl3anc 1369 . . 3 (𝜑 → (𝐴 {𝑋}) ⊆ 𝐵)
98sselda 3981 . 2 ((𝜑𝑘 ∈ (𝐴 {𝑋})) → 𝑘𝐵)
10 df-ec 8707 . . . 4 [𝑋] = ( “ {𝑋})
11 imassrn 6069 . . . . . 6 ( “ {𝑋}) ⊆ ran
12 lsmsnorb.4 . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
1312rneqi 5935 . . . . . . 7 ran = ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
14 rnopab 5952 . . . . . . . 8 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} = {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
15 vex 3476 . . . . . . . . . . . . . 14 𝑥 ∈ V
16 vex 3476 . . . . . . . . . . . . . 14 𝑦 ∈ V
1715, 16prss 4822 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1817biimpri 227 . . . . . . . . . . . 12 ({𝑥, 𝑦} ⊆ 𝐵 → (𝑥𝐵𝑦𝐵))
1918simprd 494 . . . . . . . . . . 11 ({𝑥, 𝑦} ⊆ 𝐵𝑦𝐵)
2019adantr 479 . . . . . . . . . 10 (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2120exlimiv 1931 . . . . . . . . 9 (∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2221abssi 4066 . . . . . . . 8 {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2314, 22eqsstri 4015 . . . . . . 7 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2413, 23eqsstri 4015 . . . . . 6 ran 𝐵
2511, 24sstri 3990 . . . . 5 ( “ {𝑋}) ⊆ 𝐵
2625a1i 11 . . . 4 (𝜑 → ( “ {𝑋}) ⊆ 𝐵)
2710, 26eqsstrid 4029 . . 3 (𝜑 → [𝑋] 𝐵)
2827sselda 3981 . 2 ((𝜑𝑘 ∈ [𝑋] ) → 𝑘𝐵)
2912gaorb 19212 . . . 4 (𝑋 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘))
303anim1i 613 . . . . . 6 ((𝜑𝑘𝐵) → (𝑋𝐵𝑘𝐵))
3130biantrurd 531 . . . . 5 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
32 df-3an 1087 . . . . 5 ((𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘) ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘))
3331, 32bitr4di 288 . . . 4 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
3429, 33bitr4id 289 . . 3 ((𝜑𝑘𝐵) → (𝑋 𝑘 ↔ ∃𝐴 ( + 𝑋) = 𝑘))
35 vex 3476 . . . 4 𝑘 ∈ V
363adantr 479 . . . 4 ((𝜑𝑘𝐵) → 𝑋𝐵)
37 elecg 8748 . . . 4 ((𝑘 ∈ V ∧ 𝑋𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
3835, 36, 37sylancr 585 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
39 lsmsnorb.2 . . . . 5 + = (+g𝐺)
401adantr 479 . . . . 5 ((𝜑𝑘𝐵) → 𝐺 ∈ Mnd)
412adantr 479 . . . . 5 ((𝜑𝑘𝐵) → 𝐴𝐵)
425, 39, 6, 40, 41, 36elgrplsmsn 32774 . . . 4 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 𝑘 = ( + 𝑋)))
43 eqcom 2737 . . . . 5 (𝑘 = ( + 𝑋) ↔ ( + 𝑋) = 𝑘)
4443rexbii 3092 . . . 4 (∃𝐴 𝑘 = ( + 𝑋) ↔ ∃𝐴 ( + 𝑋) = 𝑘)
4542, 44bitrdi 286 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 ( + 𝑋) = 𝑘))
4634, 38, 453bitr4rd 311 . 2 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ 𝑘 ∈ [𝑋] ))
479, 28, 46eqrdav 2729 1 (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wex 1779  wcel 2104  {cab 2707  wrex 3068  Vcvv 3472  wss 3947  {csn 4627  {cpr 4629   class class class wbr 5147  {copab 5209  ran crn 5676  cima 5678  cfv 6542  (class class class)co 7411  [cec 8703  Basecbs 17148  +gcplusg 17201  Mndcmnd 18659  LSSumclsm 19543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-ec 8707  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-lsm 19545
This theorem is referenced by:  lsmsnorb2  32776
  Copyright terms: Public domain W3C validator