Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsnorb Structured version   Visualization version   GIF version

Theorem lsmsnorb 33354
Description: The sumset of a group with a single element is the element's orbit by the group action. See gaorb 19220. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
lsmsnorb.1 𝐵 = (Base‘𝐺)
lsmsnorb.2 + = (+g𝐺)
lsmsnorb.3 = (LSSum‘𝐺)
lsmsnorb.4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
lsmsnorb.5 (𝜑𝐺 ∈ Mnd)
lsmsnorb.6 (𝜑𝐴𝐵)
lsmsnorb.7 (𝜑𝑋𝐵)
Assertion
Ref Expression
lsmsnorb (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Distinct variable groups:   + ,𝑔,𝑥,𝑦   𝐴,𝑔,𝑥,𝑦   𝑥,𝐵,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔)   𝐵(𝑔)   (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)   𝐺(𝑥,𝑦,𝑔)

Proof of Theorem lsmsnorb
Dummy variables 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmsnorb.5 . . . 4 (𝜑𝐺 ∈ Mnd)
2 lsmsnorb.6 . . . 4 (𝜑𝐴𝐵)
3 lsmsnorb.7 . . . . 5 (𝜑𝑋𝐵)
43snssd 4761 . . . 4 (𝜑 → {𝑋} ⊆ 𝐵)
5 lsmsnorb.1 . . . . 5 𝐵 = (Base‘𝐺)
6 lsmsnorb.3 . . . . 5 = (LSSum‘𝐺)
75, 6lsmssv 19556 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝐴 {𝑋}) ⊆ 𝐵)
81, 2, 4, 7syl3anc 1373 . . 3 (𝜑 → (𝐴 {𝑋}) ⊆ 𝐵)
98sselda 3934 . 2 ((𝜑𝑘 ∈ (𝐴 {𝑋})) → 𝑘𝐵)
10 df-ec 8624 . . . 4 [𝑋] = ( “ {𝑋})
11 imassrn 6020 . . . . . 6 ( “ {𝑋}) ⊆ ran
12 lsmsnorb.4 . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
1312rneqi 5877 . . . . . . 7 ran = ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
14 rnopab 5894 . . . . . . . 8 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} = {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
15 vex 3440 . . . . . . . . . . . . . 14 𝑥 ∈ V
16 vex 3440 . . . . . . . . . . . . . 14 𝑦 ∈ V
1715, 16prss 4772 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1817biimpri 228 . . . . . . . . . . . 12 ({𝑥, 𝑦} ⊆ 𝐵 → (𝑥𝐵𝑦𝐵))
1918simprd 495 . . . . . . . . . . 11 ({𝑥, 𝑦} ⊆ 𝐵𝑦𝐵)
2019adantr 480 . . . . . . . . . 10 (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2120exlimiv 1931 . . . . . . . . 9 (∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2221abssi 4020 . . . . . . . 8 {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2314, 22eqsstri 3981 . . . . . . 7 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2413, 23eqsstri 3981 . . . . . 6 ran 𝐵
2511, 24sstri 3944 . . . . 5 ( “ {𝑋}) ⊆ 𝐵
2625a1i 11 . . . 4 (𝜑 → ( “ {𝑋}) ⊆ 𝐵)
2710, 26eqsstrid 3973 . . 3 (𝜑 → [𝑋] 𝐵)
2827sselda 3934 . 2 ((𝜑𝑘 ∈ [𝑋] ) → 𝑘𝐵)
2912gaorb 19220 . . . 4 (𝑋 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘))
303anim1i 615 . . . . . 6 ((𝜑𝑘𝐵) → (𝑋𝐵𝑘𝐵))
3130biantrurd 532 . . . . 5 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
32 df-3an 1088 . . . . 5 ((𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘) ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘))
3331, 32bitr4di 289 . . . 4 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
3429, 33bitr4id 290 . . 3 ((𝜑𝑘𝐵) → (𝑋 𝑘 ↔ ∃𝐴 ( + 𝑋) = 𝑘))
35 vex 3440 . . . 4 𝑘 ∈ V
363adantr 480 . . . 4 ((𝜑𝑘𝐵) → 𝑋𝐵)
37 elecg 8666 . . . 4 ((𝑘 ∈ V ∧ 𝑋𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
3835, 36, 37sylancr 587 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
39 lsmsnorb.2 . . . . 5 + = (+g𝐺)
401adantr 480 . . . . 5 ((𝜑𝑘𝐵) → 𝐺 ∈ Mnd)
412adantr 480 . . . . 5 ((𝜑𝑘𝐵) → 𝐴𝐵)
425, 39, 6, 40, 41, 36elgrplsmsn 33353 . . . 4 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 𝑘 = ( + 𝑋)))
43 eqcom 2738 . . . . 5 (𝑘 = ( + 𝑋) ↔ ( + 𝑋) = 𝑘)
4443rexbii 3079 . . . 4 (∃𝐴 𝑘 = ( + 𝑋) ↔ ∃𝐴 ( + 𝑋) = 𝑘)
4542, 44bitrdi 287 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 ( + 𝑋) = 𝑘))
4634, 38, 453bitr4rd 312 . 2 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ 𝑘 ∈ [𝑋] ))
479, 28, 46eqrdav 2730 1 (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  wss 3902  {csn 4576  {cpr 4578   class class class wbr 5091  {copab 5153  ran crn 5617  cima 5619  cfv 6481  (class class class)co 7346  [cec 8620  Basecbs 17120  +gcplusg 17161  Mndcmnd 18642  LSSumclsm 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ec 8624  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-lsm 19549
This theorem is referenced by:  lsmsnorb2  33355
  Copyright terms: Public domain W3C validator