Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsnorb Structured version   Visualization version   GIF version

Theorem lsmsnorb 31579
Description: The sumset of a group with a single element is the element's orbit by the group action. See gaorb 18913. (Contributed by Thierry Arnoux, 21-Jan-2024.)
Hypotheses
Ref Expression
lsmsnorb.1 𝐵 = (Base‘𝐺)
lsmsnorb.2 + = (+g𝐺)
lsmsnorb.3 = (LSSum‘𝐺)
lsmsnorb.4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
lsmsnorb.5 (𝜑𝐺 ∈ Mnd)
lsmsnorb.6 (𝜑𝐴𝐵)
lsmsnorb.7 (𝜑𝑋𝐵)
Assertion
Ref Expression
lsmsnorb (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Distinct variable groups:   + ,𝑔,𝑥,𝑦   𝐴,𝑔,𝑥,𝑦   𝑥,𝐵,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔)   𝐵(𝑔)   (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)   𝐺(𝑥,𝑦,𝑔)

Proof of Theorem lsmsnorb
Dummy variables 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmsnorb.5 . . . 4 (𝜑𝐺 ∈ Mnd)
2 lsmsnorb.6 . . . 4 (𝜑𝐴𝐵)
3 lsmsnorb.7 . . . . 5 (𝜑𝑋𝐵)
43snssd 4742 . . . 4 (𝜑 → {𝑋} ⊆ 𝐵)
5 lsmsnorb.1 . . . . 5 𝐵 = (Base‘𝐺)
6 lsmsnorb.3 . . . . 5 = (LSSum‘𝐺)
75, 6lsmssv 19248 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝐵 ∧ {𝑋} ⊆ 𝐵) → (𝐴 {𝑋}) ⊆ 𝐵)
81, 2, 4, 7syl3anc 1370 . . 3 (𝜑 → (𝐴 {𝑋}) ⊆ 𝐵)
98sselda 3921 . 2 ((𝜑𝑘 ∈ (𝐴 {𝑋})) → 𝑘𝐵)
10 df-ec 8500 . . . 4 [𝑋] = ( “ {𝑋})
11 imassrn 5980 . . . . . 6 ( “ {𝑋}) ⊆ ran
12 lsmsnorb.4 . . . . . . . 8 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
1312rneqi 5846 . . . . . . 7 ran = ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
14 rnopab 5863 . . . . . . . 8 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} = {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}
15 vex 3436 . . . . . . . . . . . . . 14 𝑥 ∈ V
16 vex 3436 . . . . . . . . . . . . . 14 𝑦 ∈ V
1715, 16prss 4753 . . . . . . . . . . . . 13 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1817biimpri 227 . . . . . . . . . . . 12 ({𝑥, 𝑦} ⊆ 𝐵 → (𝑥𝐵𝑦𝐵))
1918simprd 496 . . . . . . . . . . 11 ({𝑥, 𝑦} ⊆ 𝐵𝑦𝐵)
2019adantr 481 . . . . . . . . . 10 (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2120exlimiv 1933 . . . . . . . . 9 (∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦) → 𝑦𝐵)
2221abssi 4003 . . . . . . . 8 {𝑦 ∣ ∃𝑥({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2314, 22eqsstri 3955 . . . . . . 7 ran {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)} ⊆ 𝐵
2413, 23eqsstri 3955 . . . . . 6 ran 𝐵
2511, 24sstri 3930 . . . . 5 ( “ {𝑋}) ⊆ 𝐵
2625a1i 11 . . . 4 (𝜑 → ( “ {𝑋}) ⊆ 𝐵)
2710, 26eqsstrid 3969 . . 3 (𝜑 → [𝑋] 𝐵)
2827sselda 3921 . 2 ((𝜑𝑘 ∈ [𝑋] ) → 𝑘𝐵)
2912gaorb 18913 . . . 4 (𝑋 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘))
303anim1i 615 . . . . . 6 ((𝜑𝑘𝐵) → (𝑋𝐵𝑘𝐵))
3130biantrurd 533 . . . . 5 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
32 df-3an 1088 . . . . 5 ((𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘) ↔ ((𝑋𝐵𝑘𝐵) ∧ ∃𝐴 ( + 𝑋) = 𝑘))
3331, 32bitr4di 289 . . . 4 ((𝜑𝑘𝐵) → (∃𝐴 ( + 𝑋) = 𝑘 ↔ (𝑋𝐵𝑘𝐵 ∧ ∃𝐴 ( + 𝑋) = 𝑘)))
3429, 33bitr4id 290 . . 3 ((𝜑𝑘𝐵) → (𝑋 𝑘 ↔ ∃𝐴 ( + 𝑋) = 𝑘))
35 vex 3436 . . . 4 𝑘 ∈ V
363adantr 481 . . . 4 ((𝜑𝑘𝐵) → 𝑋𝐵)
37 elecg 8541 . . . 4 ((𝑘 ∈ V ∧ 𝑋𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
3835, 36, 37sylancr 587 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ [𝑋] 𝑋 𝑘))
39 lsmsnorb.2 . . . . 5 + = (+g𝐺)
401adantr 481 . . . . 5 ((𝜑𝑘𝐵) → 𝐺 ∈ Mnd)
412adantr 481 . . . . 5 ((𝜑𝑘𝐵) → 𝐴𝐵)
425, 39, 6, 40, 41, 36elgrplsmsn 31578 . . . 4 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 𝑘 = ( + 𝑋)))
43 eqcom 2745 . . . . 5 (𝑘 = ( + 𝑋) ↔ ( + 𝑋) = 𝑘)
4443rexbii 3181 . . . 4 (∃𝐴 𝑘 = ( + 𝑋) ↔ ∃𝐴 ( + 𝑋) = 𝑘)
4542, 44bitrdi 287 . . 3 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ ∃𝐴 ( + 𝑋) = 𝑘))
4634, 38, 453bitr4rd 312 . 2 ((𝜑𝑘𝐵) → (𝑘 ∈ (𝐴 {𝑋}) ↔ 𝑘 ∈ [𝑋] ))
479, 28, 46eqrdav 2737 1 (𝜑 → (𝐴 {𝑋}) = [𝑋] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wrex 3065  Vcvv 3432  wss 3887  {csn 4561  {cpr 4563   class class class wbr 5074  {copab 5136  ran crn 5590  cima 5592  cfv 6433  (class class class)co 7275  [cec 8496  Basecbs 16912  +gcplusg 16962  Mndcmnd 18385  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-ec 8500  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-lsm 19241
This theorem is referenced by:  lsmsnorb2  31580
  Copyright terms: Public domain W3C validator