MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecinxp Structured version   Visualization version   GIF version

Theorem ecinxp 8722
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.)
Assertion
Ref Expression
ecinxp (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))

Proof of Theorem ecinxp
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → 𝐵𝐴)
21snssd 4760 . . . . . . 7 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → {𝐵} ⊆ 𝐴)
3 dfss2 3916 . . . . . . 7 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵})
42, 3sylib 218 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ({𝐵} ∩ 𝐴) = {𝐵})
54imaeq2d 6013 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ ({𝐵} ∩ 𝐴)) = (𝑅 “ {𝐵}))
65ineq1d 4168 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) = ((𝑅 “ {𝐵}) ∩ 𝐴))
7 imass2 6055 . . . . . . 7 ({𝐵} ⊆ 𝐴 → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
82, 7syl 17 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ (𝑅𝐴))
9 simpl 482 . . . . . 6 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅𝐴) ⊆ 𝐴)
108, 9sstrd 3941 . . . . 5 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) ⊆ 𝐴)
11 dfss2 3916 . . . . 5 ((𝑅 “ {𝐵}) ⊆ 𝐴 ↔ ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
1210, 11sylib 218 . . . 4 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵}))
136, 12eqtr2d 2769 . . 3 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴))
14 imainrect 6133 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴)
1513, 14eqtr4di 2786 . 2 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → (𝑅 “ {𝐵}) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}))
16 df-ec 8630 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
17 df-ec 8630 . 2 [𝐵](𝑅 ∩ (𝐴 × 𝐴)) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵})
1815, 16, 173eqtr4g 2793 1 (((𝑅𝐴) ⊆ 𝐴𝐵𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cin 3897  wss 3898  {csn 4575   × cxp 5617  cima 5622  [cec 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630
This theorem is referenced by:  qsinxp  8723  qusin  17450  pi1addval  24976  pi1grplem  24977
  Copyright terms: Public domain W3C validator