Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecinxp | Structured version Visualization version GIF version |
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
ecinxp | ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . . 8 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
2 | 1 | snssd 4739 | . . . . . . 7 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
3 | df-ss 3900 | . . . . . . 7 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵}) | |
4 | 2, 3 | sylib 217 | . . . . . 6 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → ({𝐵} ∩ 𝐴) = {𝐵}) |
5 | 4 | imaeq2d 5958 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ ({𝐵} ∩ 𝐴)) = (𝑅 “ {𝐵})) |
6 | 5 | ineq1d 4142 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) = ((𝑅 “ {𝐵}) ∩ 𝐴)) |
7 | imass2 5999 | . . . . . . 7 ⊢ ({𝐵} ⊆ 𝐴 → (𝑅 “ {𝐵}) ⊆ (𝑅 “ 𝐴)) | |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) ⊆ (𝑅 “ 𝐴)) |
9 | simpl 482 | . . . . . 6 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ 𝐴) ⊆ 𝐴) | |
10 | 8, 9 | sstrd 3927 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) ⊆ 𝐴) |
11 | df-ss 3900 | . . . . 5 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝐴 ↔ ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵})) | |
12 | 10, 11 | sylib 217 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵})) |
13 | 6, 12 | eqtr2d 2779 | . . 3 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴)) |
14 | imainrect 6073 | . . 3 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) | |
15 | 13, 14 | eqtr4di 2797 | . 2 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵})) |
16 | df-ec 8458 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
17 | df-ec 8458 | . 2 ⊢ [𝐵](𝑅 ∩ (𝐴 × 𝐴)) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) | |
18 | 15, 16, 17 | 3eqtr4g 2804 | 1 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 {csn 4558 × cxp 5578 “ cima 5583 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: qsinxp 8540 qusin 17172 pi1addval 24117 pi1grplem 24118 |
Copyright terms: Public domain | W3C validator |