![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecinxp | Structured version Visualization version GIF version |
Description: Restrict the relation in an equivalence class to a base set. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
ecinxp | ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . . . 8 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
2 | 1 | snssd 4811 | . . . . . . 7 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
3 | df-ss 3964 | . . . . . . 7 ⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵}) | |
4 | 2, 3 | sylib 217 | . . . . . 6 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → ({𝐵} ∩ 𝐴) = {𝐵}) |
5 | 4 | imaeq2d 6057 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ ({𝐵} ∩ 𝐴)) = (𝑅 “ {𝐵})) |
6 | 5 | ineq1d 4210 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) = ((𝑅 “ {𝐵}) ∩ 𝐴)) |
7 | imass2 6098 | . . . . . . 7 ⊢ ({𝐵} ⊆ 𝐴 → (𝑅 “ {𝐵}) ⊆ (𝑅 “ 𝐴)) | |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) ⊆ (𝑅 “ 𝐴)) |
9 | simpl 483 | . . . . . 6 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ 𝐴) ⊆ 𝐴) | |
10 | 8, 9 | sstrd 3991 | . . . . 5 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) ⊆ 𝐴) |
11 | df-ss 3964 | . . . . 5 ⊢ ((𝑅 “ {𝐵}) ⊆ 𝐴 ↔ ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵})) | |
12 | 10, 11 | sylib 217 | . . . 4 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝑅 “ {𝐵}) ∩ 𝐴) = (𝑅 “ {𝐵})) |
13 | 6, 12 | eqtr2d 2773 | . . 3 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴)) |
14 | imainrect 6177 | . . 3 ⊢ ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) = ((𝑅 “ ({𝐵} ∩ 𝐴)) ∩ 𝐴) | |
15 | 13, 14 | eqtr4di 2790 | . 2 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑅 “ {𝐵}) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵})) |
16 | df-ec 8701 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
17 | df-ec 8701 | . 2 ⊢ [𝐵](𝑅 ∩ (𝐴 × 𝐴)) = ((𝑅 ∩ (𝐴 × 𝐴)) “ {𝐵}) | |
18 | 15, 16, 17 | 3eqtr4g 2797 | 1 ⊢ (((𝑅 “ 𝐴) ⊆ 𝐴 ∧ 𝐵 ∈ 𝐴) → [𝐵]𝑅 = [𝐵](𝑅 ∩ (𝐴 × 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∩ cin 3946 ⊆ wss 3947 {csn 4627 × cxp 5673 “ cima 5678 [cec 8697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8701 |
This theorem is referenced by: qsinxp 8783 qusin 17486 pi1addval 24555 pi1grplem 24556 |
Copyright terms: Public domain | W3C validator |