MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqs Structured version   Visualization version   GIF version

Theorem ecqs 8800
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
Hypothesis
Ref Expression
ecqs.1 𝑅 ∈ V
Assertion
Ref Expression
ecqs [𝐴]𝑅 = ({𝐴} / 𝑅)

Proof of Theorem ecqs
StepHypRef Expression
1 df-ec 8726 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 ecqs.1 . . 3 𝑅 ∈ V
3 uniqs 8796 . . 3 (𝑅 ∈ V → ({𝐴} / 𝑅) = (𝑅 “ {𝐴}))
42, 3ax-mp 5 . 2 ({𝐴} / 𝑅) = (𝑅 “ {𝐴})
51, 4eqtr4i 2762 1 [𝐴]𝑅 = ({𝐴} / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606   cuni 4888  cima 5662  [cec 8722   / cqs 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator