MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqs Structured version   Visualization version   GIF version

Theorem ecqs 8839
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
Hypothesis
Ref Expression
ecqs.1 𝑅 ∈ V
Assertion
Ref Expression
ecqs [𝐴]𝑅 = ({𝐴} / 𝑅)

Proof of Theorem ecqs
StepHypRef Expression
1 df-ec 8765 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 ecqs.1 . . 3 𝑅 ∈ V
3 uniqs 8835 . . 3 (𝑅 ∈ V → ({𝐴} / 𝑅) = (𝑅 “ {𝐴}))
42, 3ax-mp 5 . 2 ({𝐴} / 𝑅) = (𝑅 “ {𝐴})
51, 4eqtr4i 2771 1 [𝐴]𝑅 = ({𝐴} / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   cuni 4931  cima 5703  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator