![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecqs | Structured version Visualization version GIF version |
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.) |
Ref | Expression |
---|---|
ecqs.1 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
ecqs | ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8765 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | ecqs.1 | . . 3 ⊢ 𝑅 ∈ V | |
3 | uniqs 8835 | . . 3 ⊢ (𝑅 ∈ V → ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴})) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴}) |
5 | 1, 4 | eqtr4i 2771 | 1 ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ∪ cuni 4931 “ cima 5703 [cec 8761 / cqs 8762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |