MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqs Structured version   Visualization version   GIF version

Theorem ecqs 8703
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
Hypothesis
Ref Expression
ecqs.1 𝑅 ∈ V
Assertion
Ref Expression
ecqs [𝐴]𝑅 = ({𝐴} / 𝑅)

Proof of Theorem ecqs
StepHypRef Expression
1 df-ec 8624 . 2 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 ecqs.1 . . 3 𝑅 ∈ V
3 uniqsw 8699 . . 3 (𝑅 ∈ V → ({𝐴} / 𝑅) = (𝑅 “ {𝐴}))
42, 3ax-mp 5 . 2 ({𝐴} / 𝑅) = (𝑅 “ {𝐴})
51, 4eqtr4i 2757 1 [𝐴]𝑅 = ({𝐴} / 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576   cuni 4859  cima 5619  [cec 8620   / cqs 8621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624  df-qs 8628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator