Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecqs | Structured version Visualization version GIF version |
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.) |
Ref | Expression |
---|---|
ecqs.1 | ⊢ 𝑅 ∈ V |
Ref | Expression |
---|---|
ecqs | ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8549 | . 2 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | ecqs.1 | . . 3 ⊢ 𝑅 ∈ V | |
3 | uniqs 8615 | . . 3 ⊢ (𝑅 ∈ V → ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴})) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ ({𝐴} / 𝑅) = (𝑅 “ {𝐴}) |
5 | 1, 4 | eqtr4i 2767 | 1 ⊢ [𝐴]𝑅 = ∪ ({𝐴} / 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3440 {csn 4570 ∪ cuni 4849 “ cima 5610 [cec 8545 / cqs 8546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-xp 5613 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ec 8549 df-qs 8553 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |