![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecexr | Structured version Visualization version GIF version |
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4332 | . . 3 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅) | |
2 | snprc 4720 | . . . . 5 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | imaeq2 6054 | . . . . 5 ⊢ ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) | |
4 | 2, 3 | sylbi 216 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) |
5 | ima0 6075 | . . . 4 ⊢ (𝑅 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2786 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅) |
7 | 1, 6 | nsyl2 141 | . 2 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V) |
8 | df-ec 8707 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
9 | 7, 8 | eleq2s 2849 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4321 {csn 4627 “ cima 5678 [cec 8703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8707 |
This theorem is referenced by: relelec 8750 ecdmn0 8752 erdisj 8757 eqvreldisj 37787 |
Copyright terms: Public domain | W3C validator |