| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecexr | Structured version Visualization version GIF version | ||
| Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4303 | . . 3 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅) | |
| 2 | snprc 4681 | . . . . 5 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
| 3 | imaeq2 6027 | . . . . 5 ⊢ ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) | |
| 4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) |
| 5 | ima0 6048 | . . . 4 ⊢ (𝑅 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2780 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅) |
| 7 | 1, 6 | nsyl2 141 | . 2 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V) |
| 8 | df-ec 8673 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 9 | 7, 8 | eleq2s 2846 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 “ cima 5641 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 |
| This theorem is referenced by: relelec 8718 ecdmn0 8723 erdisj 8728 eqvreldisj 38605 |
| Copyright terms: Public domain | W3C validator |