| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecexr | Structured version Visualization version GIF version | ||
| Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4320 | . . 3 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅) | |
| 2 | snprc 4698 | . . . . 5 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
| 3 | imaeq2 6048 | . . . . 5 ⊢ ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) | |
| 4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) |
| 5 | ima0 6069 | . . . 4 ⊢ (𝑅 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2787 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅) |
| 7 | 1, 6 | nsyl2 141 | . 2 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V) |
| 8 | df-ec 8726 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 9 | 7, 8 | eleq2s 2853 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {csn 4606 “ cima 5662 [cec 8722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 |
| This theorem is referenced by: relelec 8771 ecdmn0 8773 erdisj 8778 eqvreldisj 38637 |
| Copyright terms: Public domain | W3C validator |