MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecexr Structured version   Visualization version   GIF version

Theorem ecexr 8277
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
StepHypRef Expression
1 n0i 4249 . . 3 (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅)
2 snprc 4613 . . . . 5 𝐵 ∈ V ↔ {𝐵} = ∅)
3 imaeq2 5892 . . . . 5 ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
42, 3sylbi 220 . . . 4 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
5 ima0 5912 . . . 4 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2849 . . 3 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅)
71, 6nsyl2 143 . 2 (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V)
8 df-ec 8274 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
97, 8eleq2s 2908 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  {csn 4525  cima 5522  [cec 8270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ec 8274
This theorem is referenced by:  relelec  8317  ecdmn0  8319  erdisj  8324  eqvreldisj  36009
  Copyright terms: Public domain W3C validator