![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecexr | Structured version Visualization version GIF version |
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4363 | . . 3 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅) | |
2 | snprc 4742 | . . . . 5 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | imaeq2 6085 | . . . . 5 ⊢ ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) | |
4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) |
5 | ima0 6106 | . . . 4 ⊢ (𝑅 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2796 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅) |
7 | 1, 6 | nsyl2 141 | . 2 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V) |
8 | df-ec 8765 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
9 | 7, 8 | eleq2s 2862 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 “ cima 5703 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: relelec 8810 ecdmn0 8812 erdisj 8817 eqvreldisj 38570 |
Copyright terms: Public domain | W3C validator |