MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecexr Structured version   Visualization version   GIF version

Theorem ecexr 8710
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
StepHypRef Expression
1 n0i 4332 . . 3 (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅)
2 snprc 4720 . . . . 5 𝐵 ∈ V ↔ {𝐵} = ∅)
3 imaeq2 6054 . . . . 5 ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
42, 3sylbi 216 . . . 4 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
5 ima0 6075 . . . 4 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2786 . . 3 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅)
71, 6nsyl2 141 . 2 (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V)
8 df-ec 8707 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
97, 8eleq2s 2849 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2104  Vcvv 3472  c0 4321  {csn 4627  cima 5678  [cec 8703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8707
This theorem is referenced by:  relelec  8750  ecdmn0  8752  erdisj  8757  eqvreldisj  37787
  Copyright terms: Public domain W3C validator