MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecexr Structured version   Visualization version   GIF version

Theorem ecexr 8768
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
StepHypRef Expression
1 n0i 4363 . . 3 (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅)
2 snprc 4742 . . . . 5 𝐵 ∈ V ↔ {𝐵} = ∅)
3 imaeq2 6085 . . . . 5 ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
42, 3sylbi 217 . . . 4 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
5 ima0 6106 . . . 4 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2796 . . 3 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅)
71, 6nsyl2 141 . 2 (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V)
8 df-ec 8765 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
97, 8eleq2s 2862 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648  cima 5703  [cec 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765
This theorem is referenced by:  relelec  8810  ecdmn0  8812  erdisj  8817  eqvreldisj  38570
  Copyright terms: Public domain W3C validator