MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecexr Structured version   Visualization version   GIF version

Theorem ecexr 8627
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
StepHypRef Expression
1 n0i 4290 . . 3 (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅)
2 snprc 4670 . . . . 5 𝐵 ∈ V ↔ {𝐵} = ∅)
3 imaeq2 6005 . . . . 5 ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
42, 3sylbi 217 . . . 4 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
5 ima0 6026 . . . 4 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2782 . . 3 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅)
71, 6nsyl2 141 . 2 (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V)
8 df-ec 8624 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
97, 8eleq2s 2849 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {csn 4576  cima 5619  [cec 8620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624
This theorem is referenced by:  relelec  8669  ecdmn0  8674  erdisj  8679  eqvreldisj  38650
  Copyright terms: Public domain W3C validator