Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecexr | Structured version Visualization version GIF version |
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4264 | . . 3 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅) | |
2 | snprc 4650 | . . . . 5 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | imaeq2 5954 | . . . . 5 ⊢ ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) | |
4 | 2, 3 | sylbi 216 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) |
5 | ima0 5974 | . . . 4 ⊢ (𝑅 “ ∅) = ∅ | |
6 | 4, 5 | eqtrdi 2795 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅) |
7 | 1, 6 | nsyl2 141 | . 2 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V) |
8 | df-ec 8458 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
9 | 7, 8 | eleq2s 2857 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 “ cima 5583 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: relelec 8501 ecdmn0 8503 erdisj 8508 eqvreldisj 36654 |
Copyright terms: Public domain | W3C validator |