|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ecexr | Structured version Visualization version GIF version | ||
| Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| ecexr | ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | n0i 4339 | . . 3 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅) | |
| 2 | snprc 4716 | . . . . 5 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
| 3 | imaeq2 6073 | . . . . 5 ⊢ ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) | |
| 4 | 2, 3 | sylbi 217 | . . . 4 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅)) | 
| 5 | ima0 6094 | . . . 4 ⊢ (𝑅 “ ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2792 | . . 3 ⊢ (¬ 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅) | 
| 7 | 1, 6 | nsyl2 141 | . 2 ⊢ (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V) | 
| 8 | df-ec 8748 | . 2 ⊢ [𝐵]𝑅 = (𝑅 “ {𝐵}) | |
| 9 | 7, 8 | eleq2s 2858 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 → 𝐵 ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∅c0 4332 {csn 4625 “ cima 5687 [cec 8744 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ec 8748 | 
| This theorem is referenced by: relelec 8793 ecdmn0 8795 erdisj 8800 eqvreldisj 38616 | 
| Copyright terms: Public domain | W3C validator |