MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecexr Structured version   Visualization version   GIF version

Theorem ecexr 8751
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)

Proof of Theorem ecexr
StepHypRef Expression
1 n0i 4339 . . 3 (𝐴 ∈ (𝑅 “ {𝐵}) → ¬ (𝑅 “ {𝐵}) = ∅)
2 snprc 4716 . . . . 5 𝐵 ∈ V ↔ {𝐵} = ∅)
3 imaeq2 6073 . . . . 5 ({𝐵} = ∅ → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
42, 3sylbi 217 . . . 4 𝐵 ∈ V → (𝑅 “ {𝐵}) = (𝑅 “ ∅))
5 ima0 6094 . . . 4 (𝑅 “ ∅) = ∅
64, 5eqtrdi 2792 . . 3 𝐵 ∈ V → (𝑅 “ {𝐵}) = ∅)
71, 6nsyl2 141 . 2 (𝐴 ∈ (𝑅 “ {𝐵}) → 𝐵 ∈ V)
8 df-ec 8748 . 2 [𝐵]𝑅 = (𝑅 “ {𝐵})
97, 8eleq2s 2858 1 (𝐴 ∈ [𝐵]𝑅𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2107  Vcvv 3479  c0 4332  {csn 4625  cima 5687  [cec 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ec 8748
This theorem is referenced by:  relelec  8793  ecdmn0  8795  erdisj  8800  eqvreldisj  38616
  Copyright terms: Public domain W3C validator