MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecss Structured version   Visualization version   GIF version

Theorem ecss 8527
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (𝜑 → [𝐴]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 8483 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imassrn 5979 . . 3 (𝑅 “ {𝐴}) ⊆ ran 𝑅
31, 2eqsstri 3960 . 2 [𝐴]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (𝜑𝑅 Er 𝑋)
5 errn 8503 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 17 . 2 (𝜑 → ran 𝑅 = 𝑋)
73, 6sseqtrid 3978 1 (𝜑 → [𝐴]𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wss 3892  {csn 4567  ran crn 5591  cima 5593   Er wer 8478  [cec 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-rel 5597  df-cnv 5598  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-er 8481  df-ec 8483
This theorem is referenced by:  qsss  8550  divsfval  17256  sylow1lem5  19205  sylow2alem2  19221  sylow2blem1  19223  sylow3lem3  19232  vitalilem2  24771  qsalrel  40212
  Copyright terms: Public domain W3C validator