| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecss | Structured version Visualization version GIF version | ||
| Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| Ref | Expression |
|---|---|
| ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8673 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imassrn 6042 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
| 3 | 1, 2 | eqsstri 3993 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
| 4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 5 | errn 8693 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
| 7 | 3, 6 | sseqtrid 3989 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 {csn 4589 ran crn 5639 “ cima 5641 Er wer 8668 [cec 8669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-er 8671 df-ec 8673 |
| This theorem is referenced by: qsss 8749 divsfval 17510 ghmqusnsglem1 19212 ghmquskerlem1 19215 sylow1lem5 19532 sylow2alem2 19548 sylow2blem1 19550 sylow3lem3 19559 vitalilem2 25510 qsalrel 42228 |
| Copyright terms: Public domain | W3C validator |