![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecss | Structured version Visualization version GIF version |
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8765 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imassrn 6100 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
3 | 1, 2 | eqsstri 4043 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
5 | errn 8785 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
7 | 3, 6 | sseqtrid 4061 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 {csn 4648 ran crn 5701 “ cima 5703 Er wer 8760 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-er 8763 df-ec 8765 |
This theorem is referenced by: qsss 8836 divsfval 17607 ghmqusnsglem1 19320 ghmquskerlem1 19323 sylow1lem5 19644 sylow2alem2 19660 sylow2blem1 19662 sylow3lem3 19671 vitalilem2 25663 qsalrel 42235 |
Copyright terms: Public domain | W3C validator |