MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecss Structured version   Visualization version   GIF version

Theorem ecss 8753
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (𝜑 → [𝐴]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 8709 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imassrn 6070 . . 3 (𝑅 “ {𝐴}) ⊆ ran 𝑅
31, 2eqsstri 4016 . 2 [𝐴]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (𝜑𝑅 Er 𝑋)
5 errn 8729 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 17 . 2 (𝜑 → ran 𝑅 = 𝑋)
73, 6sseqtrid 4034 1 (𝜑 → [𝐴]𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3948  {csn 4628  ran crn 5677  cima 5679   Er wer 8704  [cec 8705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-er 8707  df-ec 8709
This theorem is referenced by:  qsss  8776  divsfval  17498  sylow1lem5  19512  sylow2alem2  19528  sylow2blem1  19530  sylow3lem3  19539  vitalilem2  25359  ghmquskerlem1  32803  qsalrel  41369
  Copyright terms: Public domain W3C validator