| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecss | Structured version Visualization version GIF version | ||
| Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| Ref | Expression |
|---|---|
| ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8726 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imassrn 6063 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
| 3 | 1, 2 | eqsstri 4010 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
| 4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 5 | errn 8746 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
| 7 | 3, 6 | sseqtrid 4006 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3931 {csn 4606 ran crn 5660 “ cima 5662 Er wer 8721 [cec 8722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-er 8724 df-ec 8726 |
| This theorem is referenced by: qsss 8797 divsfval 17566 ghmqusnsglem1 19268 ghmquskerlem1 19271 sylow1lem5 19588 sylow2alem2 19604 sylow2blem1 19606 sylow3lem3 19615 vitalilem2 25567 qsalrel 42258 |
| Copyright terms: Public domain | W3C validator |