![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ecss | Structured version Visualization version GIF version |
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8727 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imassrn 6075 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
3 | 1, 2 | eqsstri 4011 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
5 | errn 8747 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
7 | 3, 6 | sseqtrid 4029 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⊆ wss 3944 {csn 4630 ran crn 5679 “ cima 5681 Er wer 8722 [cec 8723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-er 8725 df-ec 8727 |
This theorem is referenced by: qsss 8797 divsfval 17532 ghmqusnsglem1 19243 ghmquskerlem1 19246 sylow1lem5 19569 sylow2alem2 19585 sylow2blem1 19587 sylow3lem3 19596 vitalilem2 25582 qsalrel 41861 |
Copyright terms: Public domain | W3C validator |