Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecss | Structured version Visualization version GIF version |
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8500 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imassrn 5980 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
3 | 1, 2 | eqsstri 3955 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
5 | errn 8520 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
7 | 3, 6 | sseqtrid 3973 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 {csn 4561 ran crn 5590 “ cima 5592 Er wer 8495 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-er 8498 df-ec 8500 |
This theorem is referenced by: qsss 8567 divsfval 17258 sylow1lem5 19207 sylow2alem2 19223 sylow2blem1 19225 sylow3lem3 19234 vitalilem2 24773 qsalrel 40215 |
Copyright terms: Public domain | W3C validator |