| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecss | Structured version Visualization version GIF version | ||
| Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| Ref | Expression |
|---|---|
| ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8634 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
| 2 | imassrn 6026 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
| 3 | 1, 2 | eqsstri 3984 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
| 4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 5 | errn 8654 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
| 7 | 3, 6 | sseqtrid 3980 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3905 {csn 4579 ran crn 5624 “ cima 5626 Er wer 8629 [cec 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-er 8632 df-ec 8634 |
| This theorem is referenced by: qsss 8710 divsfval 17469 ghmqusnsglem1 19177 ghmquskerlem1 19180 sylow1lem5 19499 sylow2alem2 19515 sylow2blem1 19517 sylow3lem3 19526 vitalilem2 25526 qsalrel 42213 |
| Copyright terms: Public domain | W3C validator |