MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecss Structured version   Visualization version   GIF version

Theorem ecss 8502
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (𝜑 → [𝐴]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 8458 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imassrn 5969 . . 3 (𝑅 “ {𝐴}) ⊆ ran 𝑅
31, 2eqsstri 3951 . 2 [𝐴]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (𝜑𝑅 Er 𝑋)
5 errn 8478 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 17 . 2 (𝜑 → ran 𝑅 = 𝑋)
73, 6sseqtrid 3969 1 (𝜑 → [𝐴]𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wss 3883  {csn 4558  ran crn 5581  cima 5583   Er wer 8453  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-er 8456  df-ec 8458
This theorem is referenced by:  qsss  8525  divsfval  17175  sylow1lem5  19122  sylow2alem2  19138  sylow2blem1  19140  sylow3lem3  19149  vitalilem2  24678  qsalrel  40141
  Copyright terms: Public domain W3C validator