Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ecss | Structured version Visualization version GIF version |
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ecss.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
Ref | Expression |
---|---|
ecss | ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8458 | . . 3 ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) | |
2 | imassrn 5969 | . . 3 ⊢ (𝑅 “ {𝐴}) ⊆ ran 𝑅 | |
3 | 1, 2 | eqsstri 3951 | . 2 ⊢ [𝐴]𝑅 ⊆ ran 𝑅 |
4 | ecss.1 | . . 3 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
5 | errn 8478 | . . 3 ⊢ (𝑅 Er 𝑋 → ran 𝑅 = 𝑋) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ran 𝑅 = 𝑋) |
7 | 3, 6 | sseqtrid 3969 | 1 ⊢ (𝜑 → [𝐴]𝑅 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 {csn 4558 ran crn 5581 “ cima 5583 Er wer 8453 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-er 8456 df-ec 8458 |
This theorem is referenced by: qsss 8525 divsfval 17175 sylow1lem5 19122 sylow2alem2 19138 sylow2blem1 19140 sylow3lem3 19149 vitalilem2 24678 qsalrel 40141 |
Copyright terms: Public domain | W3C validator |