Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ec0 Structured version   Visualization version   GIF version

Theorem ec0 37541
Description: The empty-coset of a class is the empty set. (Contributed by Peter Mazsa, 19-May-2019.)
Assertion
Ref Expression
ec0 [𝐴]∅ = ∅

Proof of Theorem ec0
StepHypRef Expression
1 df-ec 8707 . 2 [𝐴]∅ = (∅ “ {𝐴})
2 0ima 6076 . 2 (∅ “ {𝐴}) = ∅
31, 2eqtri 2758 1 [𝐴]∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4321  {csn 4627  cima 5678  [cec 8703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8707
This theorem is referenced by:  coss0  37652
  Copyright terms: Public domain W3C validator