Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ec0 Structured version   Visualization version   GIF version

Theorem ec0 38311
Description: The empty-coset of a class is the empty set. (Contributed by Peter Mazsa, 19-May-2019.)
Assertion
Ref Expression
ec0 [𝐴]∅ = ∅

Proof of Theorem ec0
StepHypRef Expression
1 df-ec 8730 . 2 [𝐴]∅ = (∅ “ {𝐴})
2 0ima 6078 . 2 (∅ “ {𝐴}) = ∅
31, 2eqtri 2757 1 [𝐴]∅ = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  c0 4315  {csn 4608  cima 5670  [cec 8726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8730
This theorem is referenced by:  coss0  38421
  Copyright terms: Public domain W3C validator