Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eceq2 | Structured version Visualization version GIF version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq2 | ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1 5964 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶})) | |
2 | df-ec 8500 | . 2 ⊢ [𝐶]𝐴 = (𝐴 “ {𝐶}) | |
3 | df-ec 8500 | . 2 ⊢ [𝐶]𝐵 = (𝐵 “ {𝐶}) | |
4 | 1, 2, 3 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {csn 4561 “ cima 5592 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: eceq2i 8539 eceq2d 8540 qseq2 8553 qusval 17253 efgrelexlemb 19356 efgcpbllemb 19361 znzrh2 20753 |
Copyright terms: Public domain | W3C validator |