| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eceq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq2 | ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1 6029 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶})) | |
| 2 | df-ec 8676 | . 2 ⊢ [𝐶]𝐴 = (𝐴 “ {𝐶}) | |
| 3 | df-ec 8676 | . 2 ⊢ [𝐶]𝐵 = (𝐵 “ {𝐶}) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {csn 4592 “ cima 5644 [cec 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 |
| This theorem is referenced by: eceq2i 8716 eceq2d 8717 qseq2 8734 qusval 17512 efgrelexlemb 19687 efgcpbllemb 19692 znzrh2 21462 |
| Copyright terms: Public domain | W3C validator |