MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq2 Structured version   Visualization version   GIF version

Theorem eceq2 8496
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5953 . 2 (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶}))
2 df-ec 8458 . 2 [𝐶]𝐴 = (𝐴 “ {𝐶})
3 df-ec 8458 . 2 [𝐶]𝐵 = (𝐵 “ {𝐶})
41, 2, 33eqtr4g 2804 1 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {csn 4558  cima 5583  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  eceq2i  8497  eceq2d  8498  qseq2  8511  qusval  17170  efgrelexlemb  19271  efgcpbllemb  19276  znzrh2  20665
  Copyright terms: Public domain W3C validator