MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq2 Structured version   Visualization version   GIF version

Theorem eceq2 8363
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5899 . 2 (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶}))
2 df-ec 8325 . 2 [𝐶]𝐴 = (𝐴 “ {𝐶})
3 df-ec 8325 . 2 [𝐶]𝐵 = (𝐵 “ {𝐶})
41, 2, 33eqtr4g 2799 1 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  {csn 4517  cima 5529  [cec 8321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-rab 3063  df-v 3401  df-un 3849  df-in 3851  df-ss 3861  df-sn 4518  df-pr 4520  df-op 4524  df-br 5032  df-opab 5094  df-cnv 5534  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-ec 8325
This theorem is referenced by:  eceq2i  8364  eceq2d  8365  qseq2  8378  qusval  16921  efgrelexlemb  18997  efgcpbllemb  19002  znzrh2  20367
  Copyright terms: Public domain W3C validator