MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eceq2 Structured version   Visualization version   GIF version

Theorem eceq2 8689
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 6015 . 2 (𝐴 = 𝐵 → (𝐴 “ {𝐶}) = (𝐵 “ {𝐶}))
2 df-ec 8650 . 2 [𝐶]𝐴 = (𝐴 “ {𝐶})
3 df-ec 8650 . 2 [𝐶]𝐵 = (𝐵 “ {𝐶})
41, 2, 33eqtr4g 2789 1 (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {csn 4585  cima 5634  [cec 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650
This theorem is referenced by:  eceq2i  8690  eceq2d  8691  qseq2  8708  qusval  17482  efgrelexlemb  19665  efgcpbllemb  19670  znzrh2  21488
  Copyright terms: Public domain W3C validator