![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqg0subgecsn | Structured version Visualization version GIF version |
Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025.) |
Ref | Expression |
---|---|
eqg0subg.0 | ⊢ 0 = (0g‘𝐺) |
eqg0subg.s | ⊢ 𝑆 = { 0 } |
eqg0subg.b | ⊢ 𝐵 = (Base‘𝐺) |
eqg0subg.r | ⊢ 𝑅 = (𝐺 ~QG 𝑆) |
Ref | Expression |
---|---|
eqg0subgecsn | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → [𝑋]𝑅 = {𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ec 8765 | . 2 ⊢ [𝑋]𝑅 = (𝑅 “ {𝑋}) | |
2 | eqg0subg.0 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
3 | eqg0subg.s | . . . . . 6 ⊢ 𝑆 = { 0 } | |
4 | eqg0subg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
5 | eqg0subg.r | . . . . . 6 ⊢ 𝑅 = (𝐺 ~QG 𝑆) | |
6 | 2, 3, 4, 5 | eqg0subg 19236 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵)) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑅 = ( I ↾ 𝐵)) |
8 | 7 | imaeq1d 6088 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑅 “ {𝑋}) = (( I ↾ 𝐵) “ {𝑋})) |
9 | snssi 4833 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → {𝑋} ⊆ 𝐵) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → {𝑋} ⊆ 𝐵) |
11 | resima2 6045 | . . . . 5 ⊢ ({𝑋} ⊆ 𝐵 → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋})) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋})) |
13 | imai 6103 | . . . 4 ⊢ ( I “ {𝑋}) = {𝑋} | |
14 | 12, 13 | eqtrdi 2796 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (( I ↾ 𝐵) “ {𝑋}) = {𝑋}) |
15 | 8, 14 | eqtrd 2780 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑅 “ {𝑋}) = {𝑋}) |
16 | 1, 15 | eqtrid 2792 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → [𝑋]𝑅 = {𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 I cid 5592 ↾ cres 5702 “ cima 5703 ‘cfv 6573 (class class class)co 7448 [cec 8761 Basecbs 17258 0gc0g 17499 Grpcgrp 18973 ~QG cqg 19162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-ec 8765 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-subg 19163 df-eqg 19165 |
This theorem is referenced by: qus0subgbas 19238 qus0subgadd 19239 |
Copyright terms: Public domain | W3C validator |