MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0subgecsn Structured version   Visualization version   GIF version

Theorem eqg0subgecsn 19136
Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025.)
Hypotheses
Ref Expression
eqg0subg.0 0 = (0g𝐺)
eqg0subg.s 𝑆 = { 0 }
eqg0subg.b 𝐵 = (Base‘𝐺)
eqg0subg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqg0subgecsn ((𝐺 ∈ Grp ∧ 𝑋𝐵) → [𝑋]𝑅 = {𝑋})

Proof of Theorem eqg0subgecsn
StepHypRef Expression
1 df-ec 8676 . 2 [𝑋]𝑅 = (𝑅 “ {𝑋})
2 eqg0subg.0 . . . . . 6 0 = (0g𝐺)
3 eqg0subg.s . . . . . 6 𝑆 = { 0 }
4 eqg0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
5 eqg0subg.r . . . . . 6 𝑅 = (𝐺 ~QG 𝑆)
62, 3, 4, 5eqg0subg 19135 . . . . 5 (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))
76adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑅 = ( I ↾ 𝐵))
87imaeq1d 6033 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑅 “ {𝑋}) = (( I ↾ 𝐵) “ {𝑋}))
9 snssi 4775 . . . . . 6 (𝑋𝐵 → {𝑋} ⊆ 𝐵)
109adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → {𝑋} ⊆ 𝐵)
11 resima2 5990 . . . . 5 ({𝑋} ⊆ 𝐵 → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋}))
1210, 11syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋}))
13 imai 6048 . . . 4 ( I “ {𝑋}) = {𝑋}
1412, 13eqtrdi 2781 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (( I ↾ 𝐵) “ {𝑋}) = {𝑋})
158, 14eqtrd 2765 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑅 “ {𝑋}) = {𝑋})
161, 15eqtrid 2777 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → [𝑋]𝑅 = {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  {csn 4592   I cid 5535  cres 5643  cima 5644  cfv 6514  (class class class)co 7390  [cec 8672  Basecbs 17186  0gc0g 17409  Grpcgrp 18872   ~QG cqg 19061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-ec 8676  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062  df-eqg 19064
This theorem is referenced by:  qus0subgbas  19137  qus0subgadd  19138
  Copyright terms: Public domain W3C validator