MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqg0subgecsn Structured version   Visualization version   GIF version

Theorem eqg0subgecsn 19113
Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025.)
Hypotheses
Ref Expression
eqg0subg.0 0 = (0g𝐺)
eqg0subg.s 𝑆 = { 0 }
eqg0subg.b 𝐵 = (Base‘𝐺)
eqg0subg.r 𝑅 = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqg0subgecsn ((𝐺 ∈ Grp ∧ 𝑋𝐵) → [𝑋]𝑅 = {𝑋})

Proof of Theorem eqg0subgecsn
StepHypRef Expression
1 df-ec 8701 . 2 [𝑋]𝑅 = (𝑅 “ {𝑋})
2 eqg0subg.0 . . . . . 6 0 = (0g𝐺)
3 eqg0subg.s . . . . . 6 𝑆 = { 0 }
4 eqg0subg.b . . . . . 6 𝐵 = (Base‘𝐺)
5 eqg0subg.r . . . . . 6 𝑅 = (𝐺 ~QG 𝑆)
62, 3, 4, 5eqg0subg 19112 . . . . 5 (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵))
76adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑅 = ( I ↾ 𝐵))
87imaeq1d 6048 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑅 “ {𝑋}) = (( I ↾ 𝐵) “ {𝑋}))
9 snssi 4803 . . . . . 6 (𝑋𝐵 → {𝑋} ⊆ 𝐵)
109adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → {𝑋} ⊆ 𝐵)
11 resima2 6006 . . . . 5 ({𝑋} ⊆ 𝐵 → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋}))
1210, 11syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋}))
13 imai 6063 . . . 4 ( I “ {𝑋}) = {𝑋}
1412, 13eqtrdi 2780 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (( I ↾ 𝐵) “ {𝑋}) = {𝑋})
158, 14eqtrd 2764 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑅 “ {𝑋}) = {𝑋})
161, 15eqtrid 2776 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → [𝑋]𝑅 = {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3940  {csn 4620   I cid 5563  cres 5668  cima 5669  cfv 6533  (class class class)co 7401  [cec 8697  Basecbs 17143  0gc0g 17384  Grpcgrp 18853   ~QG cqg 19039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-ec 8701  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-grp 18856  df-minusg 18857  df-subg 19040  df-eqg 19042
This theorem is referenced by:  qus0subgbas  19114  qus0subgadd  19115
  Copyright terms: Public domain W3C validator