| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqg0subgecsn | Structured version Visualization version GIF version | ||
| Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025.) |
| Ref | Expression |
|---|---|
| eqg0subg.0 | ⊢ 0 = (0g‘𝐺) |
| eqg0subg.s | ⊢ 𝑆 = { 0 } |
| eqg0subg.b | ⊢ 𝐵 = (Base‘𝐺) |
| eqg0subg.r | ⊢ 𝑅 = (𝐺 ~QG 𝑆) |
| Ref | Expression |
|---|---|
| eqg0subgecsn | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → [𝑋]𝑅 = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec 8726 | . 2 ⊢ [𝑋]𝑅 = (𝑅 “ {𝑋}) | |
| 2 | eqg0subg.0 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqg0subg.s | . . . . . 6 ⊢ 𝑆 = { 0 } | |
| 4 | eqg0subg.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | eqg0subg.r | . . . . . 6 ⊢ 𝑅 = (𝐺 ~QG 𝑆) | |
| 6 | 2, 3, 4, 5 | eqg0subg 19184 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝑅 = ( I ↾ 𝐵)) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑅 = ( I ↾ 𝐵)) |
| 8 | 7 | imaeq1d 6051 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑅 “ {𝑋}) = (( I ↾ 𝐵) “ {𝑋})) |
| 9 | snssi 4789 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → {𝑋} ⊆ 𝐵) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → {𝑋} ⊆ 𝐵) |
| 11 | resima2 6008 | . . . . 5 ⊢ ({𝑋} ⊆ 𝐵 → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋})) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (( I ↾ 𝐵) “ {𝑋}) = ( I “ {𝑋})) |
| 13 | imai 6066 | . . . 4 ⊢ ( I “ {𝑋}) = {𝑋} | |
| 14 | 12, 13 | eqtrdi 2787 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (( I ↾ 𝐵) “ {𝑋}) = {𝑋}) |
| 15 | 8, 14 | eqtrd 2771 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑅 “ {𝑋}) = {𝑋}) |
| 16 | 1, 15 | eqtrid 2783 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → [𝑋]𝑅 = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 I cid 5552 ↾ cres 5661 “ cima 5662 ‘cfv 6536 (class class class)co 7410 [cec 8722 Basecbs 17233 0gc0g 17458 Grpcgrp 18921 ~QG cqg 19110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-ec 8726 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-subg 19111 df-eqg 19113 |
| This theorem is referenced by: qus0subgbas 19186 qus0subgadd 19187 |
| Copyright terms: Public domain | W3C validator |